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Abstract. Let ;
P(z)=) a;7
j=0

be a polynomial of degree n and let M(P,r) =max|P(z)|.If P(z) #0in |z| <1, then

|z|=r

M(P,r)> (%)nm(p,p).

The result is best possible. In this paper we shall present a refinement of this result and
some other related results.
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1 Introduction and statement of results
Let
P(z)=Y a7
j=0
be a polynomial of degree 1, let

M(P,r)=max|P(z)|] and m(P,1)=min|P(z)|,

|z|=r |z|=1
then concerning the size of M(P,r) the following results are well known.
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Theorem 1.1 (Bernstein [3]). If P(z) =Y, a]-zj is a polynomial of degree n, then
M(P,R)<R"M(P,1) for R>1 (1.1)
with equality only for P(z) =Az".

Theorem 1.2 (Zarantauello and Verga [6]). If P(z) = Y./ ya;z/ is a polynomial of degree n,
then

M(P,r)>r"M(P,1) for r<1 (1.2)
with equality only for P(z) = Az".
For polynomials not vanishing in |z| <1, Rivilin [5] proved:

Theorem 1.3. If P(z) = Z]’-Z:Oa]-zj is a polynomial of degree n, P(z) #0 in |z| <1, then

1+r

M(P,r)2< 5 >nM(P,1) for r<1. (1.3)

The result is best possible with equality only for the polynomial

re=(25E) =l

Govil [2] has proved the following generalization of Theorem 1.3.

Theorem 1.4. If P(z) =}.i" ajz! is a polynomial of degree n having no zero in |z| <1, then for
0<r<p<l,

14+7\"
M(P,r)> <m> M(P,p). (1.4)

The result is best possible and equality holds for the polynomial

He has shown that the bound can be improved if P’(0) =0 and proved:

Theorem 1.5. If P(z)=}i ajz! is a polynomial of degree n, having no zero in |z| <1, P'(0)=0
then for 0<r<p<1,

1+r\" 1
bz <1+p> { | Calp Loy }M(pr)~ (1.5)
4 1+p

In this paper, we shall present the following refinements of Theorems 1.4 and 1.5.
Here we prove:



