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Abstract. This paper presents three boundary meshless methods for solving prob-
lems of steady-state and transient heat conduction in nonlinear functionally graded
materials (FGMs). The three methods are, respectively, the method of fundamen-
tal solution (MFS), the boundary knot method (BKM), and the collocation Trefftz
method (CTM) in conjunction with Kirchhoff transformation and various variable
transformations. In the analysis, Laplace transform technique is employed to han-
dle the time variable in transient heat conduction problem and the Stehfest nu-
merical Laplace inversion is applied to retrieve the corresponding time-dependent
solutions. The proposed MFS, BKM and CTM are mathematically simple, easy-
to-programming, meshless, highly accurate and integration-free. Three numerical
examples of steady state and transient heat conduction in nonlinear FGMs are con-
sidered, and the results are compared with those from meshless local boundary
integral equation method (LBIEM) and analytical solutions to demonstrate the effi-
ciency of the present schemes.

AMS subject classifications: 35k55, 41A30, 44A10, 65M70, 80M25
Key words: Method of fundamental solution, boundary knot method, collocation Trefftz
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1 Introduction

Functionally graded materials (FGMs) are a class of composite materials whose mi-
crostructure varies from one material to another with a specified gradient. Due to
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their continuously graded properties, FGMs are superior to conventional composites
and have featured in a wide range of engineering applications (e.g., thermal barrier
materials [1], optical materials [2], electronic materials [3] and even biomaterials [4]).

Since FGMs are widely used for structures subjected to thermal loading, it is im-
portant to analyze their thermal behaviors. Analytical methods are usually restricted
to simple physical domains and boundary conditions. Therefore, in the past decades,
extensive studies have been carried out on developing numerical methods for analyz-
ing thermal behaviors of FGMs, for example, the finite element method (FEM) [5], the
boundary element method (BEM) [6, 7], the meshless local boundary integral equa-
tion method (LBIE) [8], the meshless local Petrov-Galerkin method (MLPG) [9,10] and
the method of fundamental solution (MFS) [11, 12]. However, the conventional FEM
is inefficient for handling materials whose physical property varies continuously; the
BEM needs to treat the singular or hyper-singular integrals, which is mathematically
complex and requires extensive computational resources. To avoid these drawbacks
in the traditional FEM and BEM, various approaches [8–14] have been proposed, they
are named as meshless method in the literatures. Among these meshless methods, the
LBIE and the MLPG are classified as the category of weak-formulation, and the MFS
is classified as the category of strong-formulation.

In this paper, we focus on meshless methods with strong-formulation. This is due
to their inherent merits on easy-to-programming and integration-free. The MFS has
to construct a fictitious boundary [15–17] outside the physical domain to avoid the
singularities of fundamental solutions, however, selecting the appropriate fictitious
boundary plays a vital role for the accuracy and reliability of the MFS solution. Herein
the other two popular boundary collocation meshless methods are developed to avoid
the singularities of fundamental solutions and the controversial fictitious boundary in
the MFS. The first one is an old and powerful numerical scheme, collocation Trefftz
method (CTM) [18], which chooses nonsingular T-complete functions as basis func-
tion. Therefore the boundary knots can be placed on the physical boundary. The sec-
ond one is boundary knot method (BKM) proposed by Chen and Tanaka [19], which
used the nonsingular radial basis function (RBF) general solution instead of the sin-
gular fundamental solution. Thus the boundary knots are also placed on the physical
boundary.

On the other hand, the boundary meshless methods have been employed to deal
with transient heat conduction problems through three different approaches: (1) time-
dependent basis function method [20], one need to derive the corresponding basis
function as a priori to satisfy the transient heat conduction equation and then solve
it directly; (2) time stepping method [21], it transforms the transient heat conduc-
tion problem into time-independent inhomogeneous problem then introduces some
additional particular techniques to solve this inhomogeneous problem; (3) Laplace
transform technique [7], it uses the Laplace transformation of governing equation to
eliminate the time derivative leading to a steady-state heat conduction equation in
Laplace space, which can be solved by boundary meshless methods, and then employ
numerical Laplace inversion scheme to invert the Laplace space solutions back into
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the time-dependent solutions. This study employs the third approach. The Laplace
transform technique does not require time marching, and thus avoids the effect of the
time step on numerical accuracy. However numerical inverse Laplace transform is
an ill-posed problem, the truncation error magnification phenomena appears in the
inversion process and results in a loss of numerical accuracy. Herein a sophisticated
Stehfest algorithm originated from Gaver [22] is employed.

A brief outline of the paper is as follows. Section 2 begins with deriving the non-
singular T-complete functions, the singular fundamental solution and the nonsingular
RBF general solutions of heat conduction in FGMs, and then applies the CTM, the MFS
and the BKM in conjunction with the Kirchhoff transformation to heat transfer prob-
lems with nonlinear thermal conductivity, after that Laplace transform technique is
implemented to cope with transient heat conduction problems and the Stehfest nu-
merical inversion is applied to retrieve time-dependent solutions. Section 3 inves-
tigates the numerical efficiency of the proposed approaches through several typical
examples. Finally, some conclusions are presented in Section 4.

2 Three boundary meshless methods for nonlinear
functionally graded materials

Consider a heat conduction problem in an anisotropic heterogeneous nonlinear FGM,
occupying a 2D arbitrary shaped region Ω ⊂ ℜ2 bounded by its boundary Γ, and in
the absence of heat sources. The governing equation is stated as

2

∑
i,j=1

∂

∂xi

(
Kij (x, T)

∂T (x, t)
∂xj

)
= ρ (x, T) c (x, T)

∂T (x, t)
∂t

, x = (x1, x2) ∈ Ω, (2.1)

with the boundary and initial conditions:
Dirichlet/Essential condition

T (x, t) = T̄, x = (x1, x2) ∈ ΓD, (2.2)

Neumann/Natural condition

q(x, t) = −
2

∑
i,j=1

Kij
∂T(x, t)

∂xj
ni = q̄, x = (x1, x2) ∈ ΓN , (2.3)

Initial condition
T(x, 0) = T0(x), x = (x1, x2) ∈ Ω, (2.4)

where T(x, t) is the temperature on position x at time t, Γ = ΓD + ΓN , ρ(x, T) denotes
mass density, c(x, T) is specific heat and K = {Kij(x, T)}1≤i,j≤2 denotes the thermal

conductivity matrix which satisfies positive-definite (∆K = det(K) = K11K22 − K2
12 >

0) and symmetry (K12 = K21) conditions. {ni} the outward unit normal vector at
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boundary x ∈ Γ. When the right hand side of Eq. (2.1) is omitted, the problem degen-
erates to the case of steady state.

In this study, we assume that the heat conductor is an exponentially functionally
graded material such that its thermal conductivity is expressed by

Kij (x, T) = a (T) K̄ijexp
( 2

∑
i=1

2βixi
)
, x = (x1, x2) ∈ Ω, (2.5)

in which a (T) > 0, K̄ = {K̄ij}1≤i,j≤2 is a symmetric positive definite matrix, and the
values are all real constants. β1 and β2 denote constants of material property charac-
teristic.

The product of mass density and specific heat has the similar function type as that
of conductivity

ρ (x, T) c (x, T) = a (T) ρ̄c̄exp
( 2

∑
i=1

2βixi
)
, x = (x1, x2) ∈ Ω. (2.6)

By employing the Kirchhoff transformation

ϕ (T) =
∫

a (T)dT, (2.7)

Eqs. (2.1)-(2.4) can be reduced as the following form

2

∑
i,j=1

(
K̄ij

∂2ΦT (x, t)
∂xi∂xj

+ 2βiK̄ij
∂ΦT (x, t)

∂xj

)
= ρ̄c̄

∂ΦT (x, t)
∂t

, x = (x1, x2) ∈ Ω, (2.8)

ΦT(x, t) = ϕ(T̄), x = (x1, x2) ∈ ΓD, (2.9)

q (x, t) = −
2

∑
i,j=1

Kij
∂T(x, t)

∂xj
ni

= −exp
( 2

∑
i=1

2βixi
) 2

∑
i,j=1

K̄ij
∂ΦT(x, t)

∂xj
ni = q̄, x = (x1, x2) ∈ ΓN , (2.10)

ΦT(x, 0) = ϕ (T0(x)) , x = (x1, x2) ∈ Ω, (2.11)

where ΦT(x, t) = ϕ(T(x, t)) and the corresponding inverse Kirchhoff transformation

T(x, t) = ϕ−1 (ΦT(x, t)) . (2.12)

2.1 Steady state heat conduction problems

First consider steady state heat conduction problem, thus the right hand side of Eq. (2.8)
is omitted, i.e.

2

∑
i,j=1

(
K̄ij

∂2ΦT (x, t)
∂xi∂xj

+ 2βiK̄ij
∂ΦT (x, t)

∂xj

)
= 0, x = (x1, x2) ∈ Ω. (2.13)
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By two-step variable transformations, T-complete function [23] of Eq. (2.13) is rep-
resented as

uT (x, 1) = I0 (λr) exp
(
−

2

∑
i=1

βixi
)
,

uT (x, 2m) = Im (λr) sin (mθ) exp
(
−

2

∑
i=1

βixi
)
, m = 1, 2, · · · ,

uT (x, 2m + 1) = Im (λr) cos (mθ) exp
(
−

2

∑
i=1

βixi
)
, (2.14)

where

λ =

√√√√ 2

∑
i=1

2

∑
j=1

βiK̄ijβ j,

and Im denotes the m-order modified Bessel function of first kind, and r =
√

y2
1 + y2

2,
θ = arctan(y2/y1) in which

(
y1
y2

)
=


1√
K̄11

0

−K̄12√
K̄11∆K̄

√
K̄11√
∆K̄


(

x1
x2

)
, (2.15)

where ∆K̄ = det(K̄) = K̄11K̄22 − K̄2
12 > 0. The detailed derivation is attached in

Appendix A.
By the similar variable transformations, singular fundamental solution and non-

singular general solution [24] of Eq. (2.13) are obtained as

uF (x, s) = −K0 (λR)
2π
√

∆K̄
exp

(
−

2

∑
i=1

βi (xi + si)
)
, (2.16)

uG (x, s) = − I0 (λR)
2π
√

∆K̄
exp

(
−

2

∑
i=1

βi (xi + si)
)
, (2.17)

in which x = (x1, x2), s = (s1, s2) are collocation points and source points, respectively,
and

R =

√√√√ 2

∑
i=1

2

∑
j=1

riK̄−1
ij rj, r1 = x1 − s1, r2 = x2 − s2,

K0 denotes the zero-order modified Bessel function of second kind. The detailed deriva-
tions are attached in Appendix B.
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Then the solution of steady state heat conduction (Eqs. (2.9), (2.10) and (2.13)) can
be approximated by a linear combination of T-complete functions, fundamental solu-
tions or general solutions with the unknown coefficients {αi} as follows

Φ̄ (x) =
N

∑
i=1

αiuT (x, i) , q (x) =
N

∑
i=1

αiQT (x, i) , (2.18)

in which

QT (x, i) =
2

∑
i,j=1

K̄ij
∂uT(x, i)

∂xj
niexp

( 2

∑
i=1

2βixi
)
, (2.19)

or

Φ̄ (x) =
N

∑
i=1

αiuF (x, si) , q (x) =
N

∑
i=1

αiQF (x, si) , (2.20)

in which

QF (x, si) =
2

∑
i,j=1

K̄ij
∂uF(x, si)

∂xj
niexp

( 2

∑
i=1

2βixi
)
, (2.21)

or

Φ̄ (x) =
N

∑
i=1

αiuG (x, si) , q (x) =
N

∑
i=1

αiQG (x, si) , (2.22)

in which

QG (x, si) =
2

∑
i,j=1

K̄ij
∂uG(x, si)

∂xj
niexp

( 2

∑
i=1

2βixi
)
. (2.23)

In Eq. (2.18), N = 2m + 1 for obtaining square matrix, the unknown coefficients {αi}
can be determined by imposing boundary conditions. After Φ(x) is obtained, the
temperature solution T(x) of Eqs. (2.1)-(2.4) can be obtained via inverse Kirchhoff
transformation Eq. (2.12).

2.2 Transient heat conduction problems

In this section, three boundary collocation meshless methods for transient heat con-
duction analysis are presented. The Laplace transformation technique [7] is used to
eliminate the time derivative of transient heat conduction equation. Then the Laplace
transformed T-complete functions, fundamental solutions and RBF general solutions
are derived to obtain the numerical results of transient heat conduction problems in
Laplace space by the CTM, the MFS or the BKM. Finally, the time-dependent solutions
are restored via numerical Laplace inversion. As numerical inverse Laplace transform
is an ill-posed problem, the truncation error magnification phenomena appears in the
inversion process and results in a loss of numerical accuracy. Herein a sophisticated
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Stehfest algorithm originated from Gaver [22] is employed. This study takes into ac-
count the transient heat conduction problems with zero initial condition ΦT(x, 0) = 0,
x = (x1, x2) ∈ Ω.

Applying the Laplace transform

L (ΦT(x, t)) = Φ̃T(x, p) =
∞∫

0

ΦT(x, t)e−ptdt, (2.24)

to Eq. (2.8), we get

2

∑
i,j=1

(
K̄ij

∂2Φ̃T (x, p)
∂xi∂xj

+ 2βiK̄ij
∂Φ̃T (x, p)

∂xj

)
− ρ̄c̄pΦ̃T (x, p) = 0, (2.25)

where x = (x1, x2) ∈ Ω, and p is the Laplace transform parameter and the quantities
in the Laplace transform domain are denoted by an Over tilde. By the same variable
transformations as shown in Appendix A and B, the T-complete functions, fundamen-
tal solutions and RBF general solutions in Laplace space are obtained as follows:

(a) T-complete functions

ũT (x, 1) = I0 (ωr) exp
(
−

2

∑
i=1

βixi
)
,

ũT (x, 2m) = Im (ωr) sin (mθ) exp
(
−

2

∑
i=1

βixi
)
, m = 1, 2, · · · ,

ũT (x, 2m + 1) = Im (ωr) cos (mθ) exp
(
−

2

∑
i=1

βixi
)
. (2.26)

(b) Fundamental solutions

ũF (x, s) = −K0 (ωR)
2π
√

∆K̄
exp

(
−

2

∑
i=1

βi (xi + si)
)
. (2.27)

(c) RBF general solutions

ũG (x, s) = − I0 (ωR)
2π
√

∆K̄
exp

(
−

2

∑
i=1

βi (xi + si)
)
, (2.28)

in which ω =
√

λ2 + ρ̄c̄p.
Then one can write the corresponding approximation formula as the steady state

case, and thus the solutions in Laplace space are obtained by substituting the approx-



526 Z. J. Fu, W. Chen and Q. H. Qin / Adv. Appl. Math. Mech., 4 (2012), pp. 519-542

imation formula into the following Laplace-transformed boundary conditions with

Φ̃T(x, p) =
ϕ(T̃)

p
, x = (x1, x2) ∈ ΓD, (2.29)

q̃ (x, p) = −
2

∑
i,j=1

Kij
∂T̃(x, p)

∂xj
ni

= −exp
( 2

∑
i=1

2βixi
) 2

∑
i,j=1

K̄ij
∂Φ̃T(x, p)

∂xj
ni =

q̄
p

, x = (x1, x2) ∈ ΓN . (2.30)

Finally, the time-dependent solutions of the transformed quantities can be retrieved
by the Laplace transform inversion. Here the well-established Stehfest algorithm [22]
is applied in the numerical Laplace inversion. Assume f̃ (p) is the Laplace transform
of f (t), an approximate value fs of the inverse Laplace transform of f (t) for a specific
time t is given by

fs(t) =
ln 2

t

M

∑
i=1

Vi f̃
(

ln 2
t

i
)

, (2.31)

where

Vi = (−1)
M
2 +i

min(i, M
2 )

∑
k=[ i+1

2 ]

k
M
2 (2k)!

(M
2 − k)!k!(k − 1)!(i − k)!(2k − i)!

,

in which [C] denotes the nearest integers less than or equal to C.
According to Sutradhar’s suggestion [7], the present analysis chooses M = 10. It

means that, for a specific time t, one should solve M boundary value problems for the
corresponding parameters

p =
ln 2

t
i, i = 1, 2, · · · , M.

Similar to steady state case, the temperature solution T(x, t) of Eqs. (2.1)-(2.4) can
be obtained via Eq. (2.12).

3 Numerical results and discussions

In this section, the efficiency, accuracy and convergence of the present CTM, MFS and
BKM are assessed by considering three heat conduction problems in nonlinear FGMs.
The performances of the proposed three methods are assessed by comparing their
results with those from LBIE solutions and analytical solutions. Rerr(T) and Aerr(T)
defined below represent average relative error and absolute error, respectively,

Re rr(T) =

√√√√ 1
NT

NT

∑
i=1

∣∣∣∣T (i)− T̄ (i)
T̄ (i)

∣∣∣∣2, (3.1)

Aerr(T) = |T (i)− T̄ (i)| , (3.2)
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where T̄(i) and T(i) are the analytical and numerical solutions at xi, respectively, and
NT denotes the total number of uniform test points in the computational domain.
Unless otherwise specified, NT is taken to be 100 in all of the following numerical
cases, and the source points in the MFS are placed on a fictitious square with center
at geometry center gc of the physical domain and the fictitious boundary parameter d
(half length of the fictitious square) defines as

d =
sj − gc
xj − gc

,

which characterizes the ratio between the distance of the fictitious boundary and real
boundary to the geometry center gc of the physical domain.

Example 1. First consider steady state heat conduction in nonlinear exponential het-
erogeneous FGM in the square Ω = (−1, 1) × (−1, 1) (see Fig. 1). In practice, the
dependence of the thermal conductivity on the temperature is always chosen as lin-
ear, i.e. a(T) = 1 + µT, where µ is a constant. Therefore, the governing equation of
this problem is

2

∑
i,j=1

∂

∂xi

(1 + µT) K̄ije
2
∑

i=1
2βixi ∂T (x, t)

∂xj

 = 0, x = (x1, x2) ,∈ Ω (3.3)

where

K̄ =

(
1 0.5

0.5 4

)
, β1 = 0.3, β2 = 0.7, µ =

1
2

.

By Kirchhoff transformation, we obtain

ΦT = T +
µ

2
T2, T = ϕ−1(ΦT) =

−1 +
√

1 + 2µΦT

µ
.

Then the following transformed governing equation is calculated by the proposed
methods as

2

∑
i,j=1

(
K̄ij

∂2ΦT (x, t)
∂xi∂xj

+ 2βiK̄ij
∂ΦT (x, t)

∂xj

)
= 0, x = (x1, x2) ∈ Ω. (3.4)

The corresponding analytical solution in this example is

T(x) =
−1 +

√
1 + 2µΦT (x)

µ
, x = (x1, x2) ∈ Ω, (3.5)

where

ΦT (x) = exp
(λ (Tx + Ty)

τ
−

2

∑
i=1

βixi
)
, (3.6)
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Figure 1: Geometry of Example 1 and its boundary conditions.

in which

τ =

√√√√K̄11

(√
∆K̄ − K̄12

K̄11

)2

+ 2K̄12

(√
∆K̄ − K̄12

K̄11

)
+ K̄22,

Tx =
x1
√

∆K̄

K̄11
, Ty = − x1K̄12

K̄11
+ x2.

It should be mentioned that the corresponding Dirichlet boundary condition is
imposed based on the analytical solution.

Fig. 2 presents the effect of fictitious boundary parameter d on numerical accuracy
in the MFS. It is observed from Fig. 2 that the MFS improves numerical accuracy at
the beginning of increasing fictitious boundary parameter d, then rapidly exacerbate
numerical accuracy after achieving the optimal parameter d. Moreover, the optimal

Figure 2: Effect of fictitious boundary parameter d on numerical accuracy in the MFS.
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Figure 3: (a) The condition number of the interpolation matrices and (b) the convergent rates of Example
1 by the present CTM, BKM and MFS with different fictitious boundary parameters (d = 2, 8, 14).

parameter d may decrease with the increasing boundary knot number. Therefore, the
fictitious boundary parameter d in the MFS is problem-dependent and significantly
affects its numerical accuracy.

Fig. 3(a) shows the condition numbers of the corresponding interpolation matri-
ces by the present CTM, BKM and MFS with different fictitious boundary parameter
(d = 2, 8, 14). The condition number Cond in Fig. 3(a) is defined as the ratio of the
largest and smallest singular value. It is observed from Fig. 3(a) that with increasing
boundary points, all the condition numbers grow rapidly and the CTM in particular.
This property downplays these boundary collocation methods. There are several ways
to handle this ill-conditioning problem, including the domain decomposition method,
preconditioning technique based on approximate cardinal basis function, the fast mul-
tiple method and regularization methods [25] such as the truncated singular value
decomposition (TSVD). This study will use the TSVD to mitigate the effect of bad con-
ditioning in the CTM, MFS and BKM solutions, and the generalized cross-validation
(GCV) function choice criterion is employed to estimate an appropriate regulariza-
tion parameter of the TSVD. Our computations use the MATLAB Regularization tools
developed by Hansen [25].

Fig. 3(b) displays the convergent rate of Example 1 by the present CTM, MFS and
BKM coupled with the TSVD. It can be seen that the CTM provides the most excellent
results among these methods; the BKM has better performance with few interpolation
knots than MFS. It is noted that the numerical accuracy of BKM solution improves
evidently with modestly increasing boundary knots, but enhances slowly with a rel-
atively large number of nodes. Furthermore, it is observed that the MFS converges
more slowly than that of the other two methods, however, when choosing an appro-
priate parameter d (d = 2) it obtains much better performance than the BKM.

Example 2. A functionally graded finite strip with a unidirectional variation of ther-
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Figure 4: Geometry of Example 2 and its boundary conditions.

mal conductivity, as shown in Fig. 4, is considered [8]. The governing equation is

2

∑
i,j=1

∂

∂xi

(
K̄ijexp

( 2

∑
i=1

2βixi
)∂T (x, t)

∂xj

)

=106exp
( 2

∑
i=1

2βixi
)∂T (x, t)

∂t
, x = (x1, x2) ∈ Ω. (3.7)

The corresponding parameters of thermal conductivity and specific heat are

a(T) = 1, K̄ =

(
17 0
0 17

)
, β2 = 0.

Since the thermal conductivity is independent of temperature, i.e. a(T) = 1, there is
no need to use the Kirchhoff transformation in this example. By applying the Laplace
transform to Eq. (3.7), we obtain

2

∑
i,j=1

(
K̄ij

∂2Φ̃T (x, p)
∂xi∂xj

+ 2βiK̄ij
∂Φ̃T (x, p)

∂xj

)
− 106 pΦ̃T (x, p) = 0,

x = (x1, x2) ∈ Ω. (3.8)

Four different material property constants β1 = 0, 10, 25, 50 are assumed in numer-
ical computation of a 0.04× 0.04 square. On the sides parallel to the x2-axis two differ-
ent temperatures (Dirichlet condition) are prescribed. One side is kept at T(0, x2, t) =
0 and the other one has the Heaviside step time function, i.e., T(0.04, x2, t) = H(t). On
the lateral sides of the strip the heat flux (Neumann condition) vanishes. The special
case with material property constant β1 = 0 degenerates to a homogeneous material.
The corresponding analytical solution [8] is

T(x, t) =
x1

0.04
+

2
π

∞

∑
i=1

cos (iπ)

i
sin
(

iπx1

0.04

)
exp

(
− K̄11

106
i2π2t
0.042

)
,

x = (x1, x2) ∈ Ω (3.9)
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Figure 5: Temperature variation in a finite strip with respect to time (t) at three different locations of
Example 2 with β1 = 0 by the present (a) BKM, (c) CTM and (e) MFS (d = 8); The corresponding error
variation by the present (b) BKM, (d) CTM and (f) MFS (d = 8).

which is applied to assess the numerical accuracy of the present three schemes. For
the sake of convenience, numerical results are obtained by using the same bound-
ary knots (N = 36) and selecting the appropriate parameter d in the MFS. Fig. 5
presents the temperature and the corresponding error variations at three different
points (x1 = 0.01, 0.02, 0.03) along the line x2 = 0.02 by the CTM, BKM and MFS
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Figure 6: Temperature variation of functionally graded finite strip against time at point (0.01, 0.02) by the
present CTM, BKM and MFS (d = 3).

(d = 8), respectively. It can be found from Fig. 5 that all the numerical results of these
three methods are in good agreement with the analytical solution, and the CTM and
the MFS (d = 8) performs a little bit better than the BKM. Moreover, it is observed
from Figs. 5(d) and (f) that the error variations of CTM and MFS (d = 8) are almost
the same, which reveals that the error is generated mainly by the Stehfest numerical
inversion technique, rather than the CTM and MFS computation.

To illustrate the application of the present schemes to the FGM with β1 = 0, 10,
25, 50. The variation of temperature with time for different material property constant
β1 at point (0.01, 0.02) is present in Fig. 6. It can be found from Fig. 6 that numerical
results obtained by the MFS with an appropriate parameter d (d = 3) agree well with
both the CTM and BKM results.

As expected, it is observed that the temperature at the specific location increases
with the increasing of the thermal conductivity, which dues to increasing in the value
of β1, and the temperature tends to a steady state at long time (t > 60). The corre-
sponding analytical solution for steady state situation (tS) is taken as

T(x, tS) =
e−2β1x1 − 1

e−2β1×0.04 − 1
, x = (x1, x2) ∈ Ω.

Fig. 7 displays numerical results obtained by these three methods under station-
ary or static loading conditions compared with the analytical solution. All the nu-
merical results perform well with the analytical solution at the steady state situation
(tS). Among these three methods, the CTM achieves the best numerical accuracy;
the MFS (d = 8) yields similar accuracy with that of the CTM when β1 is small
(β1 = 0, 10), whereas it becomes worse near the boundary x1 = 0 and 0.04 when
β1 is large (β1 = 25, 50). It is observed from Figs. 5-7 that the appropriate parameter
d in the MFS changes in different examples, which may depend on time levels and
material property.
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Figure 7: Temperature variation along with x1-axis for functionally graded finite strip under steady state
loading conditions in Example 2 by the present (a) BKM, (c) CTM and (e) MFS (d = 8); The corresponding
error variation by the present (b) BKM, (d) CTM and (f) MFS (d = 8).

In comparison with LBIEM, Table 1 lists numerical results at different time levels
obtained by the present methods and LBIEM [8]. From Table 1, all the numerical re-
sults agree well with each other, and they are similar and slight larger than the LBIEM
results, except at steady state situation. It should be mentioned that the numerical so-
lutions displayed from Figs. 4 and 5 in the literature [8] probably have certain error to
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Table 1: Comparison of LBIEM* and the proposed methods at β1 = 25, x1 = 0.01.

t 10 20 30 40 50 60 Infinite
LBIEM 0.1871 0.3281 0.3800 0.3986 0.4019 0.4053 0.4581
BKM 0.1915 0.3694 0.4286 0.4471 0.4523 0.4553 0.4553
CTM 0.1914 0.3686 0.4277 0.4468 0.4529 0.4547 0.4552

MFS (d = 8) 0.1914 0.3686 0.4277 0.4468 0.4529 0.4547 0.4552
Exact / / / / / / 0.4551

(* the LBIEM results were obtained from Figs. 4 and 5 in reference [8].)

practical computing results produced by LBIEM. Different treatments of time domain
may be the main reason causing the discrepancy.

Example 3. A functionally graded finite strip with nonlinear thermal conductivity and
specific heat is considered in this example (see Fig. 8). The governing equation is

2

∑
i,j=1

∂

∂xi

(
(1 + µT) K̄ijexp

( 2

∑
i=1

2βixi
)∂T (x, t)

∂xj

)

= (1 + µT) exp
( 2

∑
i=1

2βixi
)∂T (x, t)

∂t
, x = (x1, x2) ∈ Ω, (3.10)

where

K̄ =

(
5 0
0 5

)
, β1 = 0, β2 = 1.5, µ =

1
4

.

A unit square is considered in numerical calculation. Two different temperatures
(Dirichlet condition) are prescribed on the physical boundaries paralleling to the x1-
axis. One side is kept at T(x1, 0, t) = 0 and the other is maintained at T(x1, 1, t) =
4
√

51 − 4. The remaining two boundaries are insulated (zero normal flux). Making
use of Kirchhoff transformation, we obtain

ΦT = T +
µ

2
T2, T = ϕ−1(ΦT) =

−1 +
√

1 + 2µΦT

µ
.

Then the following Kirchhoff-transformed governing equation can be obtained

2

∑
i,j=1

(
K̄ij

∂2ΦT (x, t)
∂xi∂xj

+ 2βiK̄ij
∂ΦT (x, t)

∂xj

)
=

∂ΦT (x, t)
∂t

, x = (x1, x2) ∈ Ω. (3.11)

Furthermore, applying the Laplace transform to Eq. (3.11), we have

2

∑
i,j=1

(
K̄ij

∂2Φ̃T (x, p)
∂xi∂xj

+ 2βiK̄ij
∂Φ̃T (x, p)

∂xj

)
− pΦ̃T (x, p) = 0,

x = (x1, x2) ∈ Ω. (3.12)
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Figure 8: Geometry of Example 3 and its boundary conditions.

The analytical solution of this example [7] is

T(x, t) =
−1 +

√
1 + 2µΦT (x, t)

µ
, x = (x1, x2) ∈ Ω, (3.13)

where

ΦT (x, t) = 100
1 − e−2β2x2

1 − e−2β2
+

∞

∑
i=1

An sin (iπx2)e−β2x2−(i2π2+β2
2)K̄11t, (3.14)

in which

An = − 200eβ2

β2
2 + i2π2

[
β2 sin (iπ)

1 + e−2β2

1 − e−2β2
− iπ cos (iπ)

]
. (3.15)

For the sake of convenience, numerical results are obtained by using the same
boundary knots (N = 36) and selecting the appropriate parameter d(d = 2) in the
MFS. The temperature profiles and the corresponding error variations of Example 3
along with x2-axis are plotted on Fig. 9 for various times

t = 0.002, 0.01, 0.02, 0.05, 0.1.

Numerical results of these three methods agree very well with the analytical solutions,
except the BKM results at x2 = 0, t = 0.1.

Table 2 shows numerical accuracy of Example 3 with different time levels by the
present CTM, BKM and MFS (d = 2). It can be seen from Table 2 that all these three

Table 2: Numerical accuracy (Rerr) of the present CTM and BKM with various times.

t 0.01 0.02 0.1 1
BKM 2.635 e-3 7.903 e-4 4.092 e-4 3.020 e-5
CTM 2.915 e-3 7.589 e-4 4.812 e-4 6.743 e-6

MFS (d = 2) 2.923 e-3 7.583 e-4 4.810 e-4 6.688 e-6
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Figure 9: Temperature profile of Example 3 along with x2-axis at different time levels by the present (a)
BKM, (c) CTM and (e) MFS (d = 2); The corresponding error variation by the present (b) BKM, (d) CTM
and (f) MFS (d = 2).

methods yield good accuracy, and with increasing time the higher accuracy is ob-
tained.

It should be mentioned that, for the sake of convenience, this study chooses the
same boundary knots (N = 36) and selects the appropriate parameter d in the MFS.
Therefore, the MFS results may be improved via increasing boundary knot number
and selecting the optimal parameter d. Despite great efforts for decades, determining
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the optimal parameter d is still an open issue, one may find some related techniques
in the literatures [15, 17, 26–28].

4 Conclusions

This paper presents the T-complete functions, singular fundamental solutions and
nonsingular RBF general solutions for two-dimensional heat conduction problems in
exponential FGMs by employing the Kirchhoff transformation and coordinate trans-
formations. Laplace transform technique is applied to handle the time variable and
the Stehfest numerical Laplace inversion is applied to retrieve time-dependent solu-
tions. The collocation Trefftz method, method of fundamental solution and bound-
ary knot method in conjunction with the truncated singular value decomposition is
used for heat conduction analysis in nonlinear FGMs. In comparison with LBIEM
and analytical solutions, numerical results demonstrate that the proposed CTM, MFS
and BKM are competitive boundary collocation numerical method for the solution of
steady state and transient heat conduction in nonlinear FGMs, which is mathemati-
cally simple, easy-to-program, meshless, highly accurate and integration-free.

From the present numerical experiments, some conclusions are achieved as fol-
lows:

1. The CTM performs best among these three methods. However, its condition
number is exceedingly huge and the terms of T-complete functions should be
carefully chosen to obtain desired results [29]. Moreover, it is difficult to derive
and implement high-dimension T-complete functions. This issue is still under
study.

2. The BKM converges much faster than the MFS with few boundary knots (e.g.,
N < 50), but the accuracy cannot be improved with further increasing the num-
ber of boundary nodes. Moreover, it requires deriving the corresponding RBF
general solution of the governing equation under consideration.

3. The MFS converges more slowly than the CTM and the BKM. However, when
choosing an appropriate parameter d, it does far better than the BKM. The fic-
titious boundary parameter d is problem-dependent and affects the numerical
accuracy remarkably. Therefore, determining this optimal parameter d is a cru-
cial task and remains an open issue, and some related techniques can be found
in the literatures [15, 17, 26–28].

Acknowledgments

We thank the anonymous reviewers of this paper for their very helpful comments
and suggestions to significantly improve the academic quality of this paper. The
work described in this paper was supported by National Basic Research Program of
China (973 Project No. 2010CB832702), and the R&D Special Fund for Public Wel-
fare Industry (Hydrodynamics, Grant No. 201101014), National Science Funds for



538 Z. J. Fu, W. Chen and Q. H. Qin / Adv. Appl. Math. Mech., 4 (2012), pp. 519-542

Distinguished Young Scholars (Grant No. 11125208). The first author would like to
thank Hohai University Training Program for Excellent Doctoral Dissertation (Grant
No. 2011B14814), Jiangsu Province Graduate Students Research and Innovation Plan
(Grant No. CX10B 203Z) for financial support.

A The derivation of T-complete functions

Step 1: To simplify the expression of Eq. (2.8) (transient) or Eq. (2.13) (steady state),
set ΦT = Ψe−∑2

i=1 βixi . Then Eq. (2.8) or Eq. (2.13) can be rewritten as follows:(
2

∑
i,j=1

K̄ij
∂Ψ(x)
∂xi∂xj

− λ2Ψ(x)

)
exp

(
−

2

∑
i=1

βixi
)
= 0, x = (x1, x2) ∈ Ω, (A.1)

in which

λ =

√√√√ 2

∑
i=1

2

∑
j=1

βiK̄ijβ j + ρ̄c̄p (transient case) ,

or λ =

√√√√ 2

∑
i=1

2

∑
j=1

βiK̄ijβ j (steady state case).

Since

exp
(
−

2

∑
i=1

βixi
)
> 0,

the T-complete functions of Eq. (A.1) are equal to those of anisotropic modified Helmholtz
equation.
Step 2: To find the solution of Eq. (A.1), we set

(
y1
y2

)
=


1√
K̄11

0

−K̄12√
K̄11∆K̄

√
K̄11√
∆K̄


(

x1
x2

)
, (A.2)

where
∆K̄ = det (K̄) = K̄11K̄22 − K̄2

12 > 0.

It follows from Eq. (A.1) that(
2

∑
i=1

∂2Ψ (y)
∂yi∂yi

−λ2Ψ (y)

)
= 0, y = (y1, y2) ∈ Ω. (A.3)

Hence we have the T-complete solutions for Eq. (A.1) in the form [18, 23]

I0 (λr) , Im (λr) cos (mθ) , Im (λr) sin (mθ) , m = 1, 2, · · · , (r, θ) ∈ Ω, (A.4)
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where r =
√

y2
1 + y2

2, θ = arctan(y2/y1), and Im denotes the m-order modified Bessel
function of first kind.

Therefore, the T-complete functions of Eqs. (2.8) or (2.13) is represented as

I0 (λr) exp
(
−

2

∑
i=1

βixi
)
, Im (λr) cos (mθ) exp

(
−

2

∑
i=1

βixi
)
,

Im (λr) sin (mθ) exp
(
−

2

∑
i=1

βixi
)
, m = 1, 2, · · · . (A.5)

B The derivation of singular fundamental solution and
nonsingular RBF general solution

Step 1: To simplify the expression of Eq. (2.8) (transient) or Eq. (2.13) (steady state), let

ΦT = Ψexp
(
−

2

∑
i=1

βi(xi + si)
)
.

Eq. (2.8) or Eq. (2.13) can then be rewritten as follows:(
2

∑
i,j=1

K̄ij
∂Ψ(x)
∂xi∂xj

− λ2Ψ(x)

)
exp

(
−

2

∑
i=1

βi (xi + si)
)
= 0, x = (x1, x2) ∈ Ω, (B.1)

where

λ =

√√√√ 2

∑
i=1

2

∑
j=1

βiK̄ijβ j + ρ̄c̄p (transient case) ,

or λ =

√√√√ 2

∑
i=1

2

∑
j=1

βiK̄ijβ j (steady state case).

Since

exp
(
−

2

∑
i=1

βi(xi + si)
)
> 0,

the singular fundamental solution and nonsingular RBF general solutions of Eq. (B.1)
are equal to those of anisotropic modified Helmholtz equation.
Step 2: To transform the anisotropic equation (B.1) into isotropic one, we set

(
y1
y2

)
=


1√
K̄11

0

−K̄12√
K̄11∆K̄

√
K̄11√
∆K̄


(

x1
x2

)
, (B.2)
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where ∆K̄ = det(K̄) = K̄11K̄22 − K̄2
12 > 0. It follows from Eq. (B.1) that(

2

∑
i=1

∂2Ψ (y)
∂yi∂yi

−λ2Ψ (y)

)
= 0, y = (y1, y2) ∈ Ω. (B.3)

Therefore, Eq. (B.3) is the isotropic modified Helmholtz equation, the correspond-
ing singular fundamental solution and nonsingular RBF general solutions can be found
in [19, 24]. Then the singular fundamental solutions and nonsingular RBF general so-
lutions of Eq. (B.1) are obtained by inverse transformation (B.2), respectively,

uF (x, s) = − 1
2π
√

∆K̄
K0 (λR) , (B.4)

uG (x, s) = − 1
2π
√

∆K̄
I0 (λR) , (B.5)

in which x = (x1, x2), s = (s1, s2) are collocation points and source points, respectively,
and

R =

√√√√ 2

∑
i=1

2

∑
j=1

riK̄−1
ij rj, r1 = x1 − s1, r2 = x2 − s2,

I0, K0 denotes the zero-order modified Bessel function of first and second kind.
Finally, by implementing the variable transformation

ΦT = Ψexp
(
−

2

∑
i=1

βi(xi + si)
)
,

singular fundamental solutions and nonsingular RBF general solutions of Eq. (2.8) or
Eq. (2.13) are in the following form, respectively,

uF (x, s) = −K0 (λR)
2π
√

∆K̄
exp

(
−

2

∑
i=1

βi (xi + si)
)
, (B.6)

uG (x, s) = − I0 (λR)
2π
√

∆K̄
exp

(
−

2

∑
i=1

βi (xi + si)
)
. (B.7)
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