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Abstract. An edge-weighting problem of a graph G is an assignment of an integer

weight to each edge e. Based on an edge-weighting problem, several types of vertex-

coloring problems are put forward. A simple observation illuminates that the edge-

weighting problem has a close relationship with special factors of the graphs. In this

paper, we generalise several earlier results on the existence of factors with pre-specified

degrees and hence investigate the edge-weighting problem — and in particular, we

prove that every 4-colorable graph admits a vertex-coloring 4-edge-weighting.
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1. Introduction

In this paper, we consider only finite, undirected and simple graphs. For a graph G =

(V, E), if v ∈ V (G) and e ∈ E(G) let v ∼ e mean that v is an end-vertex of e. For v ∈ V (G),

NG(v) denotes the set of vertices adjacent to v. For a spanning subgraph H of G and

W ⊆ V (G), we use dH(v) for the number of neighbors of v in H and dW (v) = |NG(v)∩W |.
In addition, letω(H) denote the number of connected components of H. A k-vertex coloring

c of G is an assignment of k integers, 1,2, · · · , k, to the vertices of G, and the color of a

vertex v is denoted by c(v). The coloring is proper if no two adjacent vertices share the

same color. A graph G is k-colorable if G has a proper k-vertex coloring. The chromatic

number χ(G) is the minimum number r such that G is r-colorable. For integers a and b,

[a, b] denotes the integers n with a ≤ n ≤ b. Notations and terminologies that are not

defined here may be found in Ref. [6].
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A k-edge-weighting of a graph G is an assignment w : E(G) → {1, · · · , k}. An edge-

weighting naturally induces a vertex coloring c(u) by defining c(u) =
∑

u∼e w(e) for every

vertex u ∈ V (G). A k-edge-weighting of a graph G is vertex-coloring if the induced vertex-

coloring is proper, i.e. c(u) 6= c(v), and we say G admits a vertex-coloring k-edge-weighting.

A k-edge-weighting can also be viewed as a partition of edges into sets {S1, · · · ,Sk}.
For each vertex v, let X v denote the multiset where the elements are the weightings of the

edges incident with v, and multiplicity of i in X v which is the number of edges incident

to v in Si. An edge-weighting is proper if no two incident edges receive the same label.

An edge-weighting is adjacent vertex-distinguishing if for every edge e = uv, Xu 6= X v; it is

vertex-distinguishing if Xu 6= X v holds for any pair of vertices u, v ∈ V (G). Proper (adjacent)

vertex-distinguishing edge-weighting has been studied by many researchers [4,5,7], and is

reminiscent of harmonious colorings [10]. Clearly, if a k-edge-weighting is vertex-coloring,

then it is adjacent vertex-distinguishing. However, the converse may not hold.

If a graph has an edge as a component, it cannot have an adjacent vertex-distinguishing

or vertex-coloring edge -weighting. Thus in this paper we only consider graphs without an

edge component, and refer to them as nice graphs. The initial study of vertex-coloring and

adjacent vertex-distinguishing edge-weightings posed the following conjecture.

Conjecture 1.1. (Karoński et al. [13]) Every nice graph admits a vertex-coloring 3-edge-

weighting.

Furthermore, Karoński et al. proved that this conjecture holds for 3-colorable graphs (The-

orem 1 of [13]). Chang et al. [8] considered bipartite graphs G = (X , Y ), and proved

that if |X ||Y | is even the graph admits a vertex-coloring 2-edge-weighting. Lu et al. [9]

improved this result, by showing that all 3-connected bipartite graphs have vertex-coloring

2-edge-weighting. For general graphs, Addario-Berry et al. [2] showed that every nice

graph admits a vertex-coloring 30-edge-weighting. Addario-Berry et al. [3] then proved

that every nice graph permits a vertex-coloring 16-edge-weighting. Wang and Yu [15] im-

proved this bound to 13, and Kalkowski et al. [12] proved that every nice graph permits a

vertex-coloring 5-edge-weighting.

On the other hand, there are many results for adjacent vertex-distinguishing edge-

weighting. Every nice graph permits an adjacent vertex-distinguishing 213-edge-weighting

and graphs with minimum degree at least 1099 permit an adjacent vertex-distinguishing

30-edge-weighting [13]; and every nice graph permits an adjacent vertex-distinguishing

4-edge-weighting, and that graphs of minimum degree at least 1000 permit an adjacent

vertex-distinguishing 3-edge-weighting [1].

There is a close relationship between 2-edge-weighting and a special list factor. If

L : V (G) 7→ 2N is a set function, a list factor (or L-factor for short) of a graph G is a

spanning subgraph H such that dH(v) ∈ L(v) for all v ∈ V (G).

In general, an L-factor problem is NP-complete, even when G is bipartite. A compre-

hensive investigation of L-factors was carried out by Lovász [14]. An L-factor is a spanning

subgraph with degrees from specified sets. When each L(v) is an interval, L-factors are the

same as usual degree factors. For instance, let f and g be nonnegative integer-valued func-

tions on V (G) with f ≥ g and L(v) = [g(v), f (v)] for v ∈ V (G). An L-factor is then exactly
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a (g, f )-factor. It has been shown that every graph has a spanning subgraph where every

vertex has a pre-specified degree [2, 3]. In Section 2, we generalize earlier results [2, 3]

about L-factors. Then using these results, in Section 3 we show that nice graphs with

appropriate degree condition have an adjacent vertex-distinguishing 2-edge-weighting.

Weighting the edges of a graph with elements of a group Γ also gives rise to a vertex-

coloring. If the vertex-coloring is proper, we say that G admits a vertex-coloring Γ-edge-

weighting. The edge-weighting problem on groups has been studied by Karoński et al. [13],

who proved that if Γ is a finite abelian group of odd order and G is a non-trivial |Γ|-
colorable graph then G admits a vertex-coloring Γ-edge-weighting. In Section 4, we obtain

several results on vertex-coloring Γ-edge-weighting, and consequently deduce that every

4-colorable graph admits a vertex-coloring 4-edge-weighting.

2. Subgraphs with Pre-Specified Degree

There are the following previous results about L-factors.

Theorem 2.1. (Addario-Berry et al. [2]) Let G be a graph and L(v) = {a−v , a−v +1, a+v , a+v +

1}, for every v ∈ V (G) such that dG(v)/3 ≤ a−v ≤ dG(v)/2 ≤ a+v ≤ 2dG(v)/3. Then G

contains an L-factor.

Theorem 2.2. (Addario-Berry et al. [3]) Let G be a graph and L(v) = {a−v , a−v +1, a+v , a+v +

1}, for every v ∈ V (G) such that a−v ≤ ⌊d(v)/2⌋ ≤ a+v < d(v), and

a+v ≤min

�

1

2
(d(v)+ a−v ) + 1,2(a−v + 1)+ 1

�

.

Then G contains an L-factor.

Theorem 2.3. (Addario-Berry et al. [3]) Let G = (X , Y ) be a bipartite graph. For v ∈ X , let

a−v = ⌊d(v)/2⌋ and a+v = a−v + 1. For v ∈ Y , choose a−v , a+v such that a−v ≤ d(v)/2≤ a+v and

a+v ≤min{(d(v)+ a−v )/2+ 1,2a−v + 1}. Let L(v) = {a−v , a+v } for every vertex v ∈ V . Then G

contains an L-factor.

The following characterization of (g, f )-factors was given by Heinrich et al. [11] for

the case where g < f .

Theorem 2.4. (Heinrich et al., [11]) Let G = (V, E) be a graph and, for all v ∈ V , integers

av, bv such that 0≤ av ≤ bv ≤ d(v). Assume that one of the following two conditions holds:

(a) av < bv for all x ∈ V;

(b) G is bipartite.

Then G has a (av, bv)-factor if and only if for all disjoint sets of vertices of A and B,

∑

v∈A

(av − dG−B(v))≤
∑

v∈B

bv . (2.1)
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We now extend the proof techniques in Refs. [2] and [3] to obtain the following more

general results.

Theorem 2.5. Suppose that c1, c2 and c3 are three constants, where 0 < c1 < c2 < c3 < 1,

c3 −
c1(1−c3)

1−c1
≤ c2 and c1 ≥ c3c2. Let G be a graph and L(v) = {a−v , a−v + 1, a+v , a+v + 1} for

every vertex v ∈ V (G) such that c1dG(v) ≤ a−v ≤ c2dG(v) ≤ a+v ≤ c3dG(v). Then G contains

an L-factor.

Proof. Given a set of integers S = {av | v ∈ V } and a subgraph H of G, we define the

deficiency of H with respect to S to be

de f (H) =
∑

v∈V (G)

max{0, av − dH(v)} .

Suppose that G contains no L-factor. Choose av ∈ {a
−
v , a+v }, bv = av + 1 and a spanning

subgraph H of G such that for all v ∈ V, dH(v)≤ bv, so that the deficiency is minimized over

all such choices. Necessarily, there exists at least one vertex v ∈ V such that dH(v)< av , so

the deficiency of H is positive.

Let A0 = {v | dH < av}. An H-alternating trail is a trail P = v0v1 · · · vk with v0 ∈ A0 and

vi vi+1 6∈ H for i even, vi vi+1 ∈ H for i odd. Let

A= {v | there is an even H-alternating trail ending at v},

and

B = {v | there is an odd H-alternating trail ending at v}.

Note that A0 ⊆ A. For v ∈ A, dH(v) ≤ av; or else, by alternating the edges in H along an

even alternating trail ending in v we obtain a subgraph with less deficiency. Similarly, for

v ∈ B, dH(v) = bv; or else we can likewise decrease the deficiency by alternating the edges

of H, this time along an odd alternating trail ending at v. Note that bv > av implies that A

and B are disjoint. Furthermore, for any edge e with one end in A and the other end not in

B, e ∈ E(H); for any edge e with one end in B and the other end not in A, e 6∈ E(H). From

these observations,

∑

v∈A

av >
∑

v∈A

dH(v) =
∑

v∈B

dH(v)+
∑

v∈A

dG−B(v) =
∑

v∈A

dG−B(v)+
∑

v∈B

bv , (2.2)

which implies that (a) of Theorem 2.4 fails for the sets A and B.

We make two claims:

for all v ∈ A, av − dG−B(v)≤ c2dB(v) (2.3)

and

for all v ∈ B, bv ≥ c2dA(v) . (2.4)
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Then (2.3) and (2.4) together with the fact
∑

v∈A dB(v) =
∑

v∈B dA(v) imply inequality

(2.1) holds for the sets A and B, a contradiction to (2.2). So to complete the proof, we only

need to prove (2.3) and (2.4).

To see (2.3), we consider v ∈ A. Assume that dH(v)< av . (Note that alternating edges

in H along an even alternating trail does not change the deficiency and the sets A and

B. Thus we assume that any vertex v ∈ A satisfies dH(v) < av .) Furthermore, we may

assume av = a+v ≥ c2d(v), or else (2.3) holds automatically. We may also assume that

dG−B(v)> a−v + 1; otherwise, by setting av = a−v and removing some edges in H from v to

B, we can reduce the deficiency. Thus

dG−B(v) = dH−B(v)> a−v + 1≥ c1d(v) ,

which implies dB(v)< (1− c1)d(v) and hence dG−B(v)>
c1

(1−c1)
dB(v). Consequently,

av − dG−B(v)≤ c3d(v)− dG−B(v)

= c3dB(v)− (1− c3)dG−B(v)

< c3dB(v)− (1− c3)
c1

(1− c1)
dB(v)

≤ c2dB(v) .

Next we show (2.4). Let v ∈ B. We may assume that bv = a−v + 1 < c2d(v), or else

(2.4) holds trivially. Suppose that the statement fails, so dA(v)> bv/c2 ≥ (c1d(v)+1)/c2 ≥
(c1d(v))/c2 + 1/c2 > a+v . There are dA(v)− bv edges from v to A that are not in H. In

particular, there is a w ∈ N(v) ∩ A such that vw 6∈ H. As noted above, we can ensure

that dH(w) < aw. This will not change the fact that vw 6∈ H. Setting av = a+v and

adding a+v − dH(v) edges from v to A into H (including the edge vw), we decrease the

deficiency.

Remark 2.1. Theorem 2.5 is a generalization of Theorem 2.1. To see this, let c1 = 1/3,

c2 = 1/2, c3 = 2/3, when c1, c2 and c3 satisfy the conditions in Theorem 2.5.

The following result is another extension of Theorem 2.1, where we consider three

consecutive pairs in L(v).

Theorem 2.6. For every vertex v of graph G, suppose that we have chosen three integers

a1
v , a2

v , a3
v such that 3

10
dG(v) ≤ a1

v ≤
4

10
dG(v) ≤ a2

v ≤
6

10
dG(v) ≤ a3

v ≤
7

10
dG(v). Let L(v) =

{a1
v , a1

v + 1, a2
v , a2

v + 1, a3
v , a3

v + 1} for every v ∈ V (G). Then G contains an L-factor.

Proof. Suppose the theorem does not hold. By Theorem 2.5, choose av ∈ {a
1
v , a2

v , a3
v},

bv = av + 1 and a spanning subgraph H of G with dH(v) ≤ bv for all v ∈ V , so that the

deficiency is minimized over all such choices. We construct A and B as in the proof of

Theorem 2.5, and prove the following two claims:

for all v ∈ A, av − dG−B(v)≤ dB(v)/2 (2.5)
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and

for all v ∈ B, bv ≥ dA(v)/2 . (2.6)

If (2.5) and (2.6) hold, then we have

∑

v∈A

(av − dG−B(v))≤
1

2

∑

v∈A

dB(v) =
1

2

∑

v∈B

dA(v)≤
∑

v∈B

bv ,

a contradiction. So it remains to prove (2.5) and (2.6).

To see (2.5), consider v ∈ A, and assume dH(v) < av . We may assume av ∈ {a
2
v , a3

v},
or else (2.5) holds trivially. If av = a3

v , then we assume that dG−B(v) > a2
v + 1, or else by

letting av = a2
v and removing from H some of the edges from v to B we can reduce the

deficiency. Moreover, dH−B = dG−B > a2
v + 1, as otherwise letting av = a2

v and deleting

edges of H between v and B contradicts our choice of H. Thus

dH−B(v) = dG−B(v)> a2
v + 1≥

4

10
dG(v) ,

which implies dB(v)<
3

5
d(v) and hence 2

3
dB(v)< dG−B(v). So we have

av − dG−B(v)≤
7

10
d(v)− dG−B(v)

=
7

10
dB(v)−

3

10
dG−B(v)

<
7

10
dB(v)−

3

10
∗

2

3
dB(v)

≤
1

2
dB(v) .

With similar arguments, (2.5) holds for the case of av = a2
v ≥ dG(v)/2.

Next, we show (2.6). Let v ∈ B. We may assume that bv = ai
v+1, where i = 1 or 2, for

otherwise (2.6) holds trivially. If bv = a1
v + 1 and dA(v) > 2bv, there are dA(v)− bv edges

from v to A that are not in H, and in particular there is a vertex w ∈ N(v)∩ A, vw 6∈ H. As

noted above, we can ensure that dH(w) < aw . This does not change the fact that vw 6∈ H.

Setting av = a2
v and adding a2

v − dH(v) edges from v to A into H (including the edge vw),

we decrease the deficiency. If av = a2
v , the arguments are similar.

With slight changes in the proof techniques of Theorems 2.2 and 2.3, we are able to

obtain the following two generalizations (Theorems 2.2 and 2.3 corresponding to the case

c = 1/2).

Theorem 2.7. Let G be a graph and c be a constant satisfing 0< c < 2/3. For all v ∈ V (G),

given integers a−v , a+v such that a−v ≤ cd(v)≤ a+v < d(v), and

a+v ≤min{cd(v) + (1− c)a−v + 1, (a−v + 1)/c+ 1} . (2.7)

Let L(v) = {a−v , a−v + 1, a+v , a+v + 1}. Then G contains an L-factor.
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Proof. Similar to the proofs of Theorems 2.5 and 2.6, it is sufficient to prove the follow-

ing two claims:

av − dG−B(v)≤ cdB(v) for all v ∈ A (2.8)

and

bv ≥ cdA(v) for all v ∈ B . (2.9)

These two statements together with the fact that
∑

v∈A dB(v) =
∑

v∈B dA(v) imply (1) holds

for the sets A and B, completing the proof of Theorem 2.7 by contradiction.

To see (2.8), consider v ∈ A and assume dH(v) < av . We may assume av = a+v , for

otherwise (2.8) holds trivially. If av = a−v , we assume that dG−B(v) > a−v + 1; or else, by

letting av = a−v and removing from H some of the edges from v to B, we can reduce the

deficiency. Moreover, dH−B = dG−B > a−v + 1. Now we have

av ≤ cd(v)+ (1− c)a−v + 1

≤ cd(v)+ (1− c)(dG−B(v)− 2)+ 1

= cdB(v)+ dG−B(v)+ 2c − 1 .

Since av is an integer and 2c − 1< 1/3, then (2.8) holds.

To prove (2.9), consider any v ∈ B. We may assume av = a−v < cd(v), for otherwise the

statement holds trivially. Suppose that the statement fails, then dA(v) > (av + 1)/c, thus

dA(v)≥ a+v by (2.7). There are dA(v)− bv edges from v to A that are not in H. In particular,

there is a vertex w ∈ N(v)∩ A, vw 6∈ H. As noted above, we can ensure that dH(w) < aw,

which does not change the fact that vw 6∈ H. Setting av = a+v and adding a+v −dH(v) edges

from v to A into H (including the edge vw), then the deficiency decreases.

Theorem 2.8. Let c be a constant with 0 < c < 2/3 and G = (X , Y ) be a bipartite graph.

For v ∈ X , let a−v = ⌊cd(v)⌋ and a+v = a−v + 1. For v ∈ Y , choose a−v , a+v such that a−v ≤
⌊cd(v)⌋ ≤ a+v and a+v ≤ min{cd(v) + (1− c)a−v + 1, a−v /c + 1}. Let L(v) = {a−v , a+v } for all

v ∈ V (G). Then G contains an L-factor.

Proof. As in the proof of Theorem 2.5, for a given set of choices of a−v and a+v suppose

that the theorem does not hold. Choose bv = av ∈ {a
−
v , a+v } for v ∈ Y and a spanning

subgraph H of G such that for all v ∈ V, dH (v) ≤ bv, so that the deficiency is minimized

over all such choices. If A0 , A and B are defined as in Theorem 2.5, it readily follows that

the bipartiteness condition implies that A and B are indeed disjoint. All the results in which

edges are in and not in H from Theorem 2.5 clearly hold in this setting. Let AX = A∩ X

and define AY , BX and BY similarly. As above, for v ∈ AX , dH(v) = a−v and for v ∈ BX ,

dH(v) = a+v . We have either

∑

v∈AX

(av − dG−BY
(v))−
∑

v∈BY

av > 0 (2.10)
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or
∑

v∈AY

(av − dG−BX
(v))−
∑

v∈BX

av > 0 , (2.11)

since there are no edges from AX to BX or from AY to BY , and the negations of these

two relations imply that the deficiency is in fact zero. We next show that neither of these

relations hold, and thus prove the theorem.

The proof now parallels that of Theorem 2.7. Let v ∈ AX . By the definition of a−v , we

have

a−v − dG−BY
(v)≤ cd(v)− dG−BY

(v)≤ cdBY
(v) .

For v ∈ BY , we claim av ≥ cdAX
(v). This is clear if av = a+v , so we may assume av = a−v .

Suppose that our claim does not hold, so a−v /c < dAX
(v). We may set av = a+v and add

some edges from v to AX into H to reduce the deficiency, contradicting its minimality. Thus

∑

v∈AX

(av − dG−BY
(v))≤ e(AX , BY )≤

∑

v∈BY

av ,

and (2.10) does not hold. A similar proof shows (2.11) does not hold, to complete the

proof.

3. Adjacent Vertex-Distinguishing 2-Edge-Weighting

It has been proven that every 3-colorable graph has a vertex-coloring 3-edge-weighting,

and In particular it has an adjacent vertex-distinguishing 3-edge-weighting [13]. A natural

question is whether every 2-colorable (bipartite) graph has an adjacent vertex-distinguishing

2-edge-weighting, and there are some previous results as follows.

Lemma 3.1. (Chang et al. [8]) A non-trivial connected bipartite graph G = (U ,W ) admits

a vertex-coloring 2-edge-weighting if one of following conditions holds:

(1) |U | or |W | is even;

(2) δ(G) = 1;

(3) ⌊d(u)/2⌋+ 1 6= d(v) for any edge uv ∈ E(G).

Recently, Lu et al. [9] improved this result, by proving that every 3-connected bipar-

tite graph admits a vertex-coloring 2-edge-weighting. A graph admitting a vertex-coloring

k-edge-weighting has an adjacent vertex-distinguishing k-edge-weighting. Let us now con-

sider adjacent vertex-distinguishing 2-edge-weighting on bipartite graphs and prove the

following results.

Theorem 3.1. Given a nice bipartite graph G = (U ,W ), if there exists a vertex v ∈ V (G)

such that dG(v) 6∈ {dG(x) | x ∈ N(v)} then G admits an adjacent vertex-distinguishing 2-

edge-weighting.
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Proof. If |U | · |W | is even, by Lemma 3.1 the result follows. Thus let us assume that both

|U | and |W | are odd. For v ∈ U such that dG(v) 6∈ {dG(x) | x ∈ N(v)}, from Lemma 4.2,

G has a vertex-coloring 2-edge-weighting such that c(x) is odd for all x ∈ U − v and c(y)

is even for all y ∈W ∪ {v}. Since dG(v) 6∈ {dG(x) | x ∈ N(v)}, then G admits an adjacent

vertex-distinguishing 2-edge-weighting, so we complete the proof.

Theorem 3.2. Every nice bipartite graph with δ(G)≥ 6 admits an adjacent vertex-distinguishing

2-edge-weighting.

Proof. Let G = (U ,W ) be a bipartite graph. For v ∈ U , let a−v = ⌊d(v)/2⌋ and a+v = a−v +

1. For v ∈W , choose a−v = ⌊d(v)/2⌋− 1 and a+v = ⌊d(v)/2⌋+ 2. Since δ(G)≥ 6, in W we

have a−v and a+v satisfying the condition of Theorem 2.3 — i.e. a+v ≤ min{(d(v)+ a−v )/2+

1,2a−v + 1}, so there is a spanning subgraph H such that dH(v) ∈ {⌊d(v)/2⌋, ⌊d(v)/2⌋+ 1}
for all v ∈ U , dH(v) ∈ {⌊d(v)/2⌋−1, ⌊d(v)/2⌋+2} for v ∈W . Thus we can label the edges

in E(H) with 1 and edges in G − E(H) with 2, to yield an adjacent vertex-distinguishing

2-edge-weighting of G.

For non-bipartite graphs, Addario-Berry et al. [3] proved that a graph G with δ(G) ≥
12χ(G) admits a vertex-coloring 2-edge-weighting. In [9], a lower bound of minimum de-

gree is improved to 8χ(G)— i.e., δ(G)≥ 8χ(G), to ensure an adjacent vertex-distinguishing

2-edge-weighting in G.

4. Vertex-Coloring Γ-Edge-Weighting on Graph

In this Section, we consider the edge-weighting problem on groups, where there are

already the following technical results.

Lemma 4.1. (Karoński et al. [13]) Let Γ be a finite Abelian group of odd order and G a

non-trivial |Γ|-colorable graph. Then there is a weighting of the edges of G with the elements

of Γ such that the induced vertex weighting is proper coloring.

Lemma 4.2. (Lu et al. [9]) Let G be a connected nice graph with chromatic number k ≥ 3

and Γ = {g1, g2, · · · , gk} be a finite abelian group, where k = |Γ|. Let c0 be any k-vertex

coloring of G with color classes {U1, · · · , Uk}, where |Ui| = ni for 1 ≤ i ≤ k. If there exists an

element h ∈ Γ such that n1 g1+ · · ·+nk gk = 2h, then there is an edge-weighting of G with the

elements of Γ such that the induced vertex coloring is c0.

Using Lemma 4.2, we can prove the following result.

Theorem 4.1. Let Zr with r ≡ 0 (mod 4) be a cyclic group and G be a r-colorable graph.

Then there exists a vertex-coloring Zr -edge-weighting of G.

Proof. Let U : V (G) 7→ Zr be a proper color of G with partition (U1, · · · , Ur) and

U (Ui) = i. If
∑r

i=1 i|Ui| is even, then by Lemma 4.2 the result follows. Now we assume
∑r

i=1 i|Ui | is odd, so
∑r/2

i=1(2i − 1)|U2i−1| is odd. Since r/2 is even, we can assume that



92 Y. Duan, H. Lu and Q. Yu

there exists some U2i−1 with even order. If there exists some U2 j with odd order, then

we recolor U2 j with color 2i − 1 and U2i−1 with 2 j and the remaining classes remains

unchanged. Then
∑r

i=1U (i)|Ui| is even and by Lemma 4.2 the result follows. Now let us

assume that |U2k| is even for k = 1,2, · · · , r/2. Note that there exists a set U2l−1 with odd

order. Now we recolor U2k with color 2l − 1 and U2l−1 with 2k and the remaining classes

remain unchanged, so the result follows.

From the above Theorem, the following results can easily be deduced.

Theorem 4.2. If G be a 4-colorable graph, then G admits a vertex-coloring 4-edge-weighting.

Corollary 4.1. Let G be a r-colorable graph, where r 6= 4k+2. Then G has a vertex-coloring

r-edge-weighting.

Since every planar graph is 4-colorable, we obtain:

Corollary 4.2. Every planar graph admits a vertex-coloring 4-edge-weighting.

Theorem 4.3. Let G be a r-colorable graph, and suppose G does not admit a vertex-coloring

Zr -edge-weighting. If λ : V (G) 7→ Zr is an arbitrary proper color of G, then |λ−1(i)| is odd

for i = 1, · · · , r.

Proof. By Lemma 4.1 and Theorem 4.1, we can assume r ≡ 2 (mod 4). Suppose

the result does not hold., so there exists a set with even order, say λ−1(i). Note that
∑r/2

l=1(2l − 1)|λ−1(2l − 1)| is odd, so there exists some l 6= i such that |λ−1(2l − 1)| is odd.

If i is even, then we recolor λ−1(2l−1)with i and color i with 2l−1 to obtain a coloring λ′.

Then
∑r

l=1 l|λ′−1(l)| is even, a contradiction to Lemma 4.2 and hence i is odd. Moreover,

we can assume |λ−1(2l)| is odd for l = 1, · · · , r/2. Now we recolor λ−1(i) with 2 and

λ−1(2) with i, and obtain a coloring λ′′. Clearly
∑r

l=1 l|λ′′−1(l)| is even, a contradiction

once again.

Theorem 4.4. Let G be a k-colorable graph, where (U0, U1, · · · , Uk−1) denote coloring classes

of G. Then G admits a vertex-coloring k-edge-weighting, if any of following conditions holds:

(i) k ≡ 0 (mod 4);

(ii) δ(G)≤ k− 2;

(iii) there exists a class Ui with |Ui| ≡ 0 (mod 2) for some i ∈ {0,1, · · · , k− 1};

(iv) |V (G)| is odd.

Proof. (i) From Lemma 4.1 and Theorem 4.1, the result follows.

(ii) Let λ : V (G) 7→ Zr be a proper vertex coloring with partition (U1, · · · , Ur). From

Theorem 4.3, |Ui| is odd for i = 1, · · · , r. Let dG(v) ≤ r − 2 and v ∈ Ui . Clearly, there

exists some U j with i 6= j such that there is no edge between v and U j . We can re-color v

with j and leave the coloring of the rest vertices unchanged to obtain a new coloring λ′, in

contradiction to Theorem 4.3.

(iii) From Theorem 4.3, the result is obvious.

(iv) Consider r ≡ 2 (mod 4). If |G| =
∑r

i=1 |Ui| is odd, then there exists some Ui such that

|Ui| is even.



L-Factors and Adjacent Vertex-Distinguishing Edge-Weighting 93

Acknowledgments

The authors are indebted to an anonymous referee for some corrections and valuable

suggestions. This work is supported by the Natural Sciences and Engineering Research

Council of Canada and the National Natural Science Foundation of China 11101329.

References

[1] L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, Vertex coloring edge partitions, J.

Combinatorial Theory Ser. B, 94 (2005), 237-244.

[2] L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed and A. Thomason, Vertex-coloring edge-

weightings, Combintorica, 27 (2007), 1-12.

[3] L. Addario-Berry, K. Dalal and B. A. Reed, Degree constrained subgraphs, Discrete Applied

Math., 156 (2008), 1168-1174.

[4] M. Aigner, E. Triesch and Zs. Tuza, Irregular assignments and vertex-distinguishing edge-

colorings of graphs, Ann. Discrete Math., 52, North-Holland, Amsterdam, 1992, 1-9.

[5] P. N. Balister, O. M. Riordan and R. H. Schelp, Vertex-distinguishing edge colorings of graphs,

J. Graph Theory, 42 (2003), 95-109.

[6] B. Bollobás, Modern Graph Theory, 2nd Edition, Springer-Verlag New York, Inc. 1998.

[7] A. C. Burris and R. H. Schelp, Vertex-distinguishing proper edge colorings, J. Graph Theory,

26 (1997), 73-82.

[8] G. J. Chang, C. Lu, J. Wu and Q. L. Yu, Vertex-coloring edge- weighting of graphs, Taiwanese

Journal of Mathematics, 15 (2011), 1807-1813

[9] H. L. Lu, Q. L. Yu and C. Q. Zhang, Vertex-coloring 2-edge-weighting of graphs, European J.

Combin., 32 (2011), 22-27.

[10] K. Edwards, The harmonioous chromatic number of bounded degree graphs, J. London Math.

Soc., 55 (1997), 435-447.

[11] K. Heinrich, P. Hell, D. G. Kirkpatrick and G. Z. Liu, A simple existence criterion for (g < f )-

factors, Discrete Math., 85 (1990), 313-317.
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[13] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colors, J. Combinatorial

Theory Ser. B, 91 (2004), 151-157.

[14] L. Lovász, The factorization of graphs (II), Acta Math. Hungar., 23 (1972), 223-246.

[15] T. Wang and Q. L. Yu, A note on vertex-coloring 13-edge-weighting, Frontier Math. in China,

3 (2008), 1-7.


