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Abstract. The 2D Maxwell eigenproblems are studied from a new point of view. An
electromagnetic problem is cast from the Lagrangian system with single variable into
the Hamiltonian system with dual variables. The electric and magnetic components
transverse to the wave propagation direction are treated as dual variables to each other.
Higher order curl-conforming and divergence-conforming vector basis functions are
used to construct dual vector spectral elements. Numerical examples demonstrate
some unique advantages of the proposed method.
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1 Introduction

2D Maxwell eigenproblem such as the waveguide analysis plays an important role in
designing optical and microwave devices including microstrips and optical fibers. Popu-
lar finite element methods (FEM) [1–4] for this study are usually based on the second
order wave equations with one variable (electric field E or magnetic field H). Once
the FEM process is done and the discretized variable is obtained, numerical differenti-
ation will be needed to calculate the other variable based on a fixed FEM mesh and the
Maxwell’s equations. Obviously the accuracy of the second variable obtained from this
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post-processing will be one order lower than that of the first variable, and this precision
mismatch is undesirable for some applications requiring the values of both electric and
magnetic fields simultaneously, e.g., the waveport implementation in time domain finite
difference or finite element method. On the other hand, several schemes have been pro-
posed simultaneously using both E and H as variables [5–8].

In this study we propose a Hamiltonian analysis and a dual vector spectral element
method (SEM) for the 2D Maxwell eigenproblems. An electromagnetic problem is cast
from the Lagrangian system with single variable into the Hamiltonian system [9], which
is based on the transverse electric field and transverse magnetic field as dual variables to
each other. Higher order curl-conforming and divergence-conforming vector basis func-
tions based on the Gauss-Lobatto-Legendre (GLL) polynomials [10, 11] are employed to
construct the dual vector SEM. The dual vector SEM discretization of an electromagnetic
eigenproblem can achieve spectral accuracy with the increase of interpolation degrees of
basis functions, and they can directly give the numerical solutions for both electric field
and magnetic field at the same level of accuracy.

2 Hamiltonian system and dual variable variational principle

Conventional FEM analysis is usually based on one variable. In other words, it is de-
scribed in the Lagrangian system. To develop the dual vector SEM in the Hamiltonian
system, we need to start with the first order Maxwell’s equations

{

∇×E=−jωµH,

∇×H= jωǫE.
(2.1)

Here excitation and dissipation terms are omitted without losing the generality of ana-
lyzing a eigenproblem. E is electric field and H is magnetic field. ǫ and µ denote the
permittivity and permeability, respectively. The variational form for the above equations
is

Π(E,H)=
∫

Ω

[

H∗ ·∇×E+
jωµ

2
H∗ ·H+

jωǫ

2
E∗ ·E

]

dΩ, δΠ=0, (2.2)

where Ω denotes the area of this eigenproblem, and ∗ is the complex conjugate operator.
Performing the variational w.r.t. E and H independently in (2.2) will lead to the original
equations (2.1). The proof steps are straightforward and will not be elaborated here.

To cast (2.2) into the Hamiltonian system we define the transverse electric and mag-
netic fields as dual variables [9]

q=Et, p=Ht×z, (2.3)

where z denotes the direction of wave propagation. We also decompose the Nabla oper-
ator into transverse and longitudinal components

∇=∇t+(.)z, (2.4)
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where (.) is defined as ∂( )/∂z, e.g. q̇= ∂q/∂z. Here we made an analogy between the
time and the partial derivative w.r.t. the z direction, and this is to follow the convention in
the Hamiltonian mechanics [9]. With (2.3) and (2.4) the functional (2.2) can be rewritten
as

Π=
∫

Ω

[

p∗ ·q̇+Ez ·(∇·p)∗+
jωǫ

2
(q∗ ·q+E∗

z ·Ez)

+H∗
z ·∇t×q+

jωµ

2
(p∗ ·p+H∗

z ·Hz)

]

dΩ. (2.5)

By performing variational w.r.t. Ez and Hz, we will get

{

Ez=−j∇t ·p/(ωǫ),

Hz= j∇t×q/(ωµ).
(2.6)

With substitution (2.6) into (2.5), the dual variable variational principle is as

Π(q,p)=
∫

Ω
[p∗ ·q̇−H(q,p))]dΩ, δΠ=0, (2.7)

where

H(q,p)=−
jωǫ

2
q∗ ·q+

j

2ωµ
(∇t×q)∗ ·(∇t×q)

−
jωµ

2
p∗ ·p+

j

2ωǫ
(∇t ·p)

∗(∇t ·p) (2.8)

is the Hamiltonian function.

3 Symplectic eigenproblem analysis

Without loss of generality, we can assume boundary is either perfect electric conductor
(PEC) or perfect magnetic conductor (PMC). For open region problems, we can always
apply a perfectly matched layer (PML) to enclose the cross section and then let the outer-
most boundary be PEC or PMC. Taking variation for q and p in (2.7) separately, with the
above boundary conditions and using Green’s identities as well as Gauss’s theorem, we
will obtain dual differential equations as

v̇=Hv, (3.1)

where

v=

[

q

p

]

(3.2)
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and

H=

[

0 −jωµ− j
ωǫ∇t∇t·

−jωǫ+ j
ωµ∇t×∇t× 0

]

. (3.3)

Assuming γ is the propagation constant along the longitudinal direction, i.e. v =
Ψ(x,y)exp(γz), (3.1) will be transformed to

HΨ=γΨ, (3.4)

where γ and Ψ are eigenvalue and eigenvector of this problem.
It is not difficult to prove that (3.4) is a symplectic eigenproblem. For any two vectors

Ψa and Ψb, as long as they satisfy boundary conditions, we can obtain the following
identity based on Green’s identities and Gauss’s theorem

〈

Ψa,HΨb

〉

=
〈

Ψb,HΨa

〉

, (3.5)

where the angle bracket operator means symplectic inner product

〈

Ψa,Ψb

〉

=
∫

Ω
Ψa ·J·ΨbdΩ (3.6)

and J is a 2×2 unit symplectic matrix

J=

[

0 1
−1 0

]

. (3.7)

Once the identity (3.5) is verified and the the operator matrix H is proven to be in the
Hamiltonian system, there are a series of conclusions of symplectic eigenvalue analysis
to be applied to the original Maxwell eigenproblem [9]. For example, if γ is a eigenvalue
of the problem, then so will be −γ. Thus all the eigenvalues can be categorized into two
groups:

{

γi, Re(γi)<0 or Re(γi)=0∩Im(γi)<0,

γ−i, γ−i=−γi, i=1,2,3,··· .
(3.8)

Eigensolutions with Re(γi) = 0 are corresponding to wave propagation, and the others
are evanescent modes.

In the Hamiltonian system we have the adjoint symplectic orthogonality



















〈

Ψi,Ψj

〉

=0,
〈

Ψ−i,Ψ−j

〉

=0,
〈

Ψi,Ψ−j

〉

=δij,
〈

Ψ−i,Ψj

〉

=δij, i>0, j>0,

(3.9)
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where Ψi and Ψ−i are eigenvectors corresponding to eigenvalues γi and γ−i, respectively.
Any field distribution of the 2D Maxwell eigenproblem can be represented by the eigen-
vectors







v(x,y)= ∑
i=1,2,···

(aiΨi+biΨ−i),

ai =−
〈

Ψ−i,v
〉

, bi =
〈

Ψi,v
〉

.
(3.10)

The analytical symplectic eigenproblem analysis only applies to very limited geome-
tries filled with homogeneous material. For more general problems, finite elements can
be used for discretization. The symplectic operator matrix H will become a discretized
Hamiltonian matrix after FEM discretization, and (3.4) will be transformed into a Hamil-
tonian matrix eigenvalue problem.

4 Dual vector spectral elements

Here we propose a dual vector spectral element method for the 2D Maxwell eigenprob-
lem analysis. The mixed-order curl-conforming vector spectral basis function and the
mixed-order divergence-conforming vector spectral basis functions are employed to dis-
cretize the dual variables q and p [12–15], respectively. The spectral basis functions are
special types of higher order basis functions with sampling points defined as the Gauss-
Lobatto-Legendre (GLL) points, which are roots of the derivatives of the GLL polyno-
mials. By choosing GLL points rather than equal-spaced grids as sampling points, the
spectral element can avoid the well-known Runge phenomenon and achieve spectral ac-
curacy, which means the numerical results will converge exponentially as the increase of
interpolation order of basis functions.

Fig. 1 shows schematics of a third order spectral element for the dual variables. The
basis function of the 2D mixed-order curl-conforming vector spectral element is defined
as







N
ξ
q(ξ,η)= ξ̂φ

(M−1)
m (ξ)φ

(M)
l (η),

N
η
q (ξ,η)= η̂φ

(M)
m (ξ)φ

(M−1)
l (η),

(4.1)

and the basis function of the 2D mixed-order divergence-conforming vector spectral ele-
ment is defined as







N
ξ
p(ξ,η)= ξ̂φ

(M)
m (ξ)φ

(M−1)
l (η),

N
η
p(ξ,η)= η̂φ

(M−1)
m (ξ)φ

(M)
l (η),

(4.2)

where ξ and η are variables in the reference coordinate system: (ξ,η)∈ [−1,1]×[−1,1]. ξ̂
and η̂ are unit vectors in the reference coordinate system.

φ
(M)
m (ξ)=

−(1−ξ2)L′
M(ξ)

M(M+1)LM(ξm)(ξ−ξm)
, m=0,··· ,M, (4.3)
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Figure 1: Schematics of 2D dual vector spectral elements: the mixed-order curl-conforming spectral basis
function shown in (a) is used to represent q; the mixed-order divergence-conforming spectral basis function
shown in (b) is used to represent p. M=3 is assumed in this figure.

LM(ξ) is the Legendre polynomial of degree of M, and ξm is chosen as the roots of (1−

ξ2
m)L′

M(ξm)=0. φ
(M)
l (η) is similar to φ

(M)
m (ξ) but for a different coordinate variable.

The dual vector spectral elements need to be mapped to the physical domain with
curved edges after its original construction in the reference domain. To maintain the curl-
conforming or divergence-conforming properties, co-variant and contra-variant transfor-
mations should be applied to the dual variables q and p, respectively. Details are referred
to [14] and not elaborated here.

Assuming kz as the propagation constant along the z direction, and representing dual
variables q and p in each element as

qe=∑Nqqe =
{

Nq

}T{
qe
}

, (4.4)

pe=∑Np pe =
{

Np

}T{
pe
}

, (4.5)

where qe and pe mean values of dual variables in one element.
{

qe
}

and {pe
}

are vectors
of coefficients of corresponding finite element basis functions.

Functional (2.7) will be discretized as

Π=
1

2 ∑
e

{

qe
}H

(Ke
qq/ω−ωMe

qq)
{

qe
}

+∑
e

kz

{

pe
}H

Me
pq

{

qe
}

+
1

2 ∑
e

{

pe
}H

(Ke
pp/ω−ωMe

pp)
{

pe
}

, (4.6)
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where H denote conjugate transpose, and matrices in (4.6) are

Ke
qq=

∫ ∫

Ωe

1

µe

{

∇t×Ne
q

}

·
{

∇t×Ne
q

}T
dΩ, (4.7)

Me
qq=

∫ ∫

Ωe
ǫe
{

Ne
q

}

·
{

Ne
q

}T
dΩ, (4.8)

Ke
pp=

∫ ∫

Ωe

1

ǫe

{

∇t ·N
e
p

}

·
{

∇t ·N
e
p

}T
dΩ, (4.9)

Me
pp=

∫ ∫

Ωe
µe
{

Ne
p

}

·
{

Ne
p

}T
dΩ, (4.10)

Me
pq=

∫ ∫

Ωe

{

Ne
p

}

·
{

Ne
q

}T
dΩ, Me

qp=MeT
pq. (4.11)

Assembling the above elemental matrices and using the Ritz method, we will obtain the
discretized linear system of matrix equations by the dual vector SEM

[

Kqq/ω−ωMqq kzMqp

kzMpq Kpp/ω−ωMpp

][

q

p

]

=

[

0

0

]

. (4.12)

System (4.12) can be used in two ways: in the first scenario the propagation constant kz

is assumed, and the corresponding working frequencies are to be calculated; in the other
case the frequency ω will be a fixed value, and the system of equations can be rewrit-
ten as a generalized eigenvalue problem with propagation constant as its eigenvalues.
Examples of both scenarios will be given and discussed in the following section.

5 Numerical results and discussions

The first example is about a 1 cm×0.4 cm rectangular waveguide filled with air and
enclosed by perfect electric conductor. An orthogonal and uniform 4 by 4 SEM mesh
with different interpolation order is used to discretize the computational domain, and
to calculate the cut-off frequencies of first several modes. Fig. 2 show the relative errors
of cut-off frequencies of the first two TE modes and first two TM modes by dual vector
SEM with different interpolations orders. We can clearly see that the numerical errors
decrease exponentially with the increase of interpolation order. In other word, the dual
vector SEM can achieve spectral accuracy. The CPU time and memory consumption of
dual vector SEM with different interpolation orders are listed in Table 1, from which
we can observe that the computational costs grow rapidly with the increase of order of
basis functions, and this is common in higher order finite element schemes. On the other
hand, the numbers given in Table 1 are for solving the full eigenproblem of each dual
vector SEM scheme. The CPU time as well as memory cost will be much less, and their
increasing trends will be much slower if only first several modes (e.g. the first two TE
and first two TM modes as shown in Fig. 2) need to be obtained.
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dual SEM interpolation order
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Figure 2: The relative errors of cut-off frequencies by dual vector SEM decrease exponentially with the increase
of interpolation orders.

Table 1: Computational costs of dual vector SEM with different interpolation order.

dual SEM order 1st 2nd 3rd 4th 5th 6th 7th

CPU time (s) 0.06 0.11 0.17 0.59 3.44 13.32 37.53

memory (kB) 11 106 540 1,836 4,635 9,878 18,680

2D Maxwell eigenanalysis is an essential step of the waveport implementation in time
domain finite different or finite element method, where the transverse components of
both electric and magnetic fields are needed for the cross section of a waveport. Con-
ventional FEM is based on one variable, for example, the electric field E. The other field
H needs to be obtained by numerical differentiation based on a fixed FEM mesh, and
its accuracy will be one order lower than E field directly from the FEM calculation. Ap-
parently this precision mismatch is undesirable to the waveport implementation as well
as other applications requiring both fields simultaneously. On the other hand, the dual
vector SEM employs interpolation functions of the same degree for both variables, so it
guarantee the calculated E and H fields have the same level of accuracy. Fig. 3 shows
the convergence curves of numerical H field of the TM21 mode by conventional higher
order FEM using E as the variable and the proposed scheme based on dual variables. It is
clearly to see that the dual vector SEM is one order more accurate than the conventional
FEM.

The second example is a shielded microstrip line as shown in Fig. 4. The upper half
of this microstrip line is filled with air, and the lower half filled with anisotropic medium
ǫx = ǫy = 9.4 and ǫz = 11.6. Fig. 5 shows the calculated dispersion characteristics of this
microstrip line by the proposed dual vector SEM as well as the reference results obtained
from a commercial software with a very fine mesh. From this figure we can see that the
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Figure 3: The relative errors of the numerical H fields of the TM21 mode by second order conventional FEM
and second order dual vector SEM.

Figure 4: A shield microstrip line with dimension as a=2b=2w=4d.
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Figure 5: The dispersion characteristics of the first four modes.
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dual SEM interpolation order
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Figure 6: The relative error of the first four modes by dual vector SEM decrease exponentially with the increase
of interpolation orders.

dual vector SEM results agree with reference very well. The convergence trends of the
first four modes w.r.t. the interpolation order of the dual vector SEM are shown in Fig. 6,
from which we again observe the spectral convergence.

6 Conclusion

In this paper we have discussed Hamiltonian analysis for Maxwell eigenvalue problems,
and proposed a dual vector spectral element method for numerical calculation. Numer-
ical results demonstrate that the dual vector SEM can simultaneously give numerical re-
sults for both electric field and magnetic field with a similar level of accuracy, and it can
achieve spectral accuracy with the increase of interpolation degrees of basis functions.
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