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Abstract

A novel overlapping domain decomposition splitting algorithm based on a Crank-

Nicolson method is developed for the stochastic nonlinear Schrödinger equation driven

by a multiplicative noise with non-periodic boundary conditions. The proposed algorithm

can significantly reduce the computational cost while maintaining the similar conservation

laws. Numerical experiments are dedicated to illustrating the capability of the algorithm

for different spatial dimensions, as well as the various initial conditions. In particular,

we compare the performance of the overlapping domain decomposition splitting algorithm

with the stochastic multi-symplectic method in [S. Jiang et al., Commun. Comput. Phys.,

14 (2013), 393–411] and the finite difference splitting scheme in [J. Cui et al., J. Dif-

fer. Equ., 266 (2019), 5625–5663]. We observe that our proposed algorithm has excellent

computational efficiency and is highly competitive. It provides a useful tool for solving

stochastic partial differential equations.

Mathematics subject classification: 60H35, 35Q55, 60H15.

Key words: Stochastic nonlinear Schrödinger equation, Domain decomposition method,

Operator splitting, Overlapping domain decomposition splitting algorithm.

1. Introduction

The main purpose of this work is to propose an innovative overlapping domain decomposition

splitting (ODDS for short) algorithm for the stochastic nonlinear Schrödinger (NLS) equation

driven by a multiplicative noise

{
idu = [∆u+ λ|u|2u]dt+ εu ◦ dW (t), t ∈ (0, T ],

u(0, x) = u0(x), x ∈ D ⊂ R
d, d ≥ 1

(1.1)

with Dirichlet boundary conditions, ε > 0, λ ∈ R and W an L2(D;R)-valued Q-Wiener process

defined on a complete filtered probability space (Ω,F , {Ft}t∈[0,T ],P). More precisely, W (t) has

the following Karhunen-Loève expansion:

W (t) =
∑

k∈Nd

Q
1

2 ekβk(t), t ∈ [0, T ]

with{ek}k∈Nd being an orthonormal basis of L2(D;R), {βk}k∈Nd being a sequence of real-valued

mutually independent and identically distributed Brownian motions, andQek = ηkek for ηk ≥ 0,
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k ∈ N
d. For convenience, we always consider the equivalent Itô form of (1.1)

idu =

[
∆u+ λ|u|2u− i

2
ε2FQu

]
dt+ εudW (t) (1.2)

with the initial value u(0) = u0 and

FQ(x) :=
∑

k∈Nd

(
Q

1

2 ek(x)
)2
.

In the last two decades, much progress has been made in theoretical analysis and numerical

approximation for the stochastic NLS equation. To numerically inherit the charge conserva-

tion law and the geometric structure of (1.1), [8, 9, 13, 23] propose the stochastic symplectic

and multi-symplectic algorithms. Particularly, the authors in [11] applies the large deviation

principle to investigate the probabilistic superiority of the stochastic symplectic algorithms.

Very recently, the authors in [17] discover the stochastic symplectic structure of the stochastic

Schrödinger equation on Wasserstein manifold at the first time. To preserve the ergodicity

of the numerical solution of (1.1), [20, 21] study the ergodic numerical approximations. To

reduce the computational cost of (1.1), [22] designs a parareal algorithm and [12, 14, 25, 26]

propose the splitting algorithm, respectively. For more details about other kinds of numerical

approximations of the stochastic NLS equation, we refer to [2, 3, 5, 6, 10, 15, 16, 18] and refer-

ences therein. These existing semi-discretizations and full discretizations for the stochastic NLS

equation mentioned above are all investigated under the assumption of homogeneous or periodic

boundary conditions. It is worth to point out that the soliton solution of the nonlinear disper-

sive wave propagation problems in a very large or unbounded domain for the stochastic NLS

equation is an interesting and important subject in applications (see, e.g. [1]). However, solving

high dimensional stochastic partial differential equations can be a computationally intensive

task, particularly when the computational domain is very large. To simulate such systems in

a moderate amount of time, we must employ high-performance computing. This motivates us

to construct highly efficient and numerically stable algorithms for the d-dimensional stochastic

NLS equation (1.1) in a large spatial domain with inhomogeneous or non-periodic boundary

conditions.

To this end, we first apply the splitting technique of [25] to the Eq. (1.1) and get a deter-

ministic linear PDE with random initial datum and a nonlinear stochastic PDE

idu[1] = ∆u[1]dt, (1.3)

idu[2] = λ
∣∣u[2]

∣∣2u[2]dt+ εu[2] ◦ dW (t). (1.4)

Then, for the subsystem (1.4) we can get the analytic solution due to the point-wise conservation

law |u(t, x)| = |u0(x)|. The key issues lie in the numerical approximation for the subsystem

(1.3), we first discretize it based on the Crank-Nicolson scheme in the temporal direction and

get a temporal semi-discretization.

To overcome the difficulties introduced by the non-periodic boundary conditions, we use the

Chebyshev pseudo-spectral interpolation idea in space. To efficiently exploit modern high per-

formance computing platforms, it is essential to design high performance algorithms. Domain

decomposition method provides a useful tool to develop fast and efficient solvers for stochas-

tic PDEs with a large number of random inputs. The non-overlapping domain decomposition

method for PDEs with random coefficients is first proposed in [27] and then extended by [28] to
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quantify uncertainty in large-scale simulations. We refer to [19,24,29,30] and references therein

for more details about the theory and applications of the domain decomposition method to

PDEs with the random input.

We combine the Chebyshev interpolation idea and the overlapping domain decomposition

method to approximate the temporal semi-discretization of (1.3) and thus obtain a full dis-

cretization of (1.3). The explicitness of the solution of (1.4) together with the full discretization

of (1.3) gives us an ODDS algorithm for the stochastic NLS equation (1.1). Finally, several

numerical examples for the stochastic NLS equation in one and two-dimensional spaces are

presented to illustrate the capability of the proposed algorithm, which can be calculated high

efficient. To the best of our knowledge, this is the first domain decomposition result of nu-

merical approximations for stochastic PDEs whose the stochasticity comes from the stochastic

source.

The rest of this paper is organized as follows. In Section 2, we present and analyze the

ODDS algorithm for the stochastic NLS equation. In Section 2.1, we show the algorithm for

the one-dimensional stochastic NLS equation. In Section 2.2, we focus on studying the ODDS

algorithm for the two-dimensional case. Section 3 contains some numerical experiments for the

stochastic NLS equation to demonstrate the accuracy and efficiency of the proposed algorithm.

Concluding remarks are given in Section 4.

2. The ODDS Algorithm for the Stochastic NLS Equation

In this section, we devote to obtaining the ODDS algorithm for the stochastic NLS equation

in one and multi-dimensional spaces.

2.1. An ODDS algorithm for the one-dimensional stochastic NLS equation

This part concentrates mainly on demonstrating an ODDS algorithm for the following

stochastic nonlinear problem:

idu =
[
uxx + λ|u|2u

]
dt+ εu ◦ dW (t), t ∈ (0, T ] (2.1)

with an initial datum

u(0, x) = u0(x), x ∈ D = [xL, xR],

and the boundary conditions

u(t, xL) = f(t), u(t, xR) = g(t), t ∈ (0, T ]. (2.2)

It is well known that the stochastic NLS equation (1.1) possesses the charge conservation law

under the homogeneous or periodic boundary conditions (see, e.g. [4, Proposition 4.4]), that is

∫

D

|u(t, x)|2dx =

∫

D

|u0(x)|2dx, P-a.s. (2.3)

for all t ∈ [0, T ]. Furthermore, if we define the Hamiltonian

H(u) =
1

2

∫

D

|∇u(x)|2dx− λ

4

∫

D

|u(x)|4dx,
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then the averaged energy E[H(u(t))] satisfies (see, e.g. [4, Proposition 4.5])

E
[
H
(
u(t)

)]
= E[H(u0)] +

ε2

2

∫ t

0

∫

D

|u(s, x)|2
∑

k∈Nd

∣∣∇
(
Q

1

2 ek(x)
)∣∣2dxds. (2.4)

In general, there is no charge conservation law or the averaged energy evolution law for the

stochastic NLS equation with the boundary conditions (2.2).

(a) Operator Splitting

We use a splitting technique which was proposed in [25] to discretize (2.1) and obtain

idu[1] = u[1]
xxdt, (2.5)

idu[2] =

(
λ
∣∣u[2]

∣∣2u[2] − i

2
FQu

[2]

)
dt+ εu[2]dW (t). (2.6)

Note that for the nonlinear subsystem (2.6), we have the following useful result. We refer

readers to [25, Proposition 3.1] for more details.

Proposition 2.1. Assume the initial datum u0 is F0-measurable L2-valued random variable.

Then the solution of

idu[2] =

(
λ
∣∣u[2]

∣∣2u[2] − i

2
FQu

[2]

)
dt+ εu[2]dW (t)

is given by

u[2](t, x) = u0(x) exp
{
− i
(
tλ|u0(x)|2 + εW (t, x)

)}

due to |u[2](t, x)| = |u0(x)|.

Motivated by this proposition, we get the following recursion in Tn = (tn, tn+1], tn = nτ ,

n ∈ {0, 1, . . . , N − 1}:
un+1 = exp

{
− i
(
τλ|un|2 + ε∆Wn+1

)}
un (2.7)

with u0 = u0 and ∆Wn+1 := W (tn+1, x)−W (tn, x).

(b) Overlapping Domain Decomposition Method

Now we are in a position to approximate the linear subsystem (2.5). Denoting by p and q

the real and imaginary parts of the solution u[1] of (2.5), which satisfy

dp = qxxdt, dq = −pxxdt. (2.8)

Applying the Crank-Nicolson method to discretize the above equations in the temporal direction

yields

pn+1 = pn +
τ

2

(
qn+1
xx + qnxx

)
, qn+1 = qn − τ

2

(
pn+1
xx + pnxx

)
(2.9)

for all n = 0, 1, . . . , N − 1.

Before we come to the spatial discretization of (2.9), let us introduce some basic concepts

of the overlapping domain decomposition method. Let

V m :=
[
xm
L , xm

R

]
, x1

L = xL, xM
R = xR, m = 1, 2, . . . ,M
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be a uniform partition of D = [xL, xR] with the spatial step size ∆x, thus D = ∪M
m=1V

m.

Further, we consider a uniform partition of V m, m = 1, 2, . . . ,M , with J+1 grid points in each

fine interval, i.e.

xm
L = xm

0 < xm
1 < · · · < xm

J−1 < xm
J = xm

R , m = 1, 2, . . . ,M.

Differing from the traditional spatial partition, here we require the last two points of the

element V m coincide with the first two points of the element V m+1, that is

x1
0 = xL, xM

J = xR, xm
J−1 = xm+1

0 , xm
J = xm+1

1 , m = 1, 2, . . . ,M − 1.

In this situation, we remark that ∆x 6= (xR − xL)/M . The general idea of the overlapping

domain decomposition method is displayed in Fig. 2.1.

Fig. 2.1. Basic idea of the overlapping domain decomposition method.

After the above preliminaries, in element V m, m = 1, 2, . . . ,M , we have

pm,n+1 = pm,n +
τ

2

(
qm,n+1
xx + qm,n

xx

)
, qm,n+1 = qm,n − τ

2

(
pm,n+1
xx + pm,n

xx

)
, (2.10)

then u[1],m := pm + iqm is an approximation of the solution of (2.5) over the m-th element.

To discretize these equations with the boundary conditions (2.2), we mainly use the Cheby-

shev-Gauss-Lobatto quadrature points (see, e.g. [7, Chapter 4]) in the interval [−1, 1] of the

form

ηj = cos

(
J − j

J
π

)
, j = 0, 1, . . . , J.

Since (2.10) holds for the interval [xm
L , xm

R ], in order to use the Chebyshev interpolation tech-

nique we need to introduce the following transformation:

ηm :
[
xm
L , xm

R

]
→ [−1, 1], ym 7→ 2

xm
R − xm

L

ym − xm
R + xm

L

xm
R − xm

L

, (2.11)

then after a straightforward calculation we arrive at

∆x =
xR − xL

M + (1−M)
(
1− cos(π/J)

)
/2

.

Example 2.1. If J = 2, then

∆x =
2(xR − xL)

M + 1
.

Example 2.2. If M = 1, then ∆x = xR − xL. After the uniform partition of D = [xL, xR]

with J + 1 grid points, we derive the overlapping domain decomposition method (or classical

finite difference method) with the uniform spatial step size (xR − xL)/J .
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Now, we present the interpolation pm(ηm, t) and qm(ηm, t) on the Chebyshev-Gauss-Lobatto

collocation points ηm ∈ [−1, 1] given by

pm(ηm, t) =

J∑

j=0

p̃mj (t)φm
j (ηm) :=

(
Φm(ηm)

)⊤
Pm(t),

qm(ηm, t) =
J∑

j=0

q̃mj (t)φm
j (ηm) :=

(
Φm(ηm)

)⊤
Qm(t),

(2.12)

where Φm = [φm
0 , · · · , φm

J ]⊤ with φj being the Lagrangian interpolation function, Pm =

[p̃m0 , · · · , p̃mJ ]⊤, and Qm = [q̃m0 , · · · , q̃mJ ]⊤.

Taking the second-order partial derivatives of pm and qm with respect to ym and using the

transformation (2.11), it holds that

∂2pm(ym, t)

∂ym,2
=

(
2

xm
R − xm

L

)2
∂2pm(ηm, t)

∂ηm,2
=

(
2

xm
R − xm

L

)2

(Φm)⊤Dm,(2)Pm,

∂2qm(ym, t)

∂ym,2
=

(
2

xm
R − xm

L

)2
∂2qm(ηm, t)

∂ηm,2
=

(
2

xm
R − xm

L

)2

(Φm)⊤Dm,(2)Qm,

(2.13)

respectively, where Dm,(2) is a (J + 1)× (J + 1) differential matrix on the element V m. It can

be checked that the entries of Dm,(r) for any r ≥ 1 are given by

[Dm,(r)]i+1,j+1 =






r

ηmj − ηmi

(
ej
ei
[Dm,(r−1)]i+1,i+1 − [Dm,(r−1)]i+1,j+1

)
, i 6= j,

−
J∑

k=0,k 6=i

[Dm,(r)]i+1,k+1, i = j
(2.14)

with

e0 =
(−1)J

2
, eJ =

1

2
, ej = (−1)J−j , j = 1, 2, . . . , J − 1.

We refer to [7, 31] for more details. Particularly, the entries of Dm,(1) are defined as

D
m,(1)
i,j =






−2J2 + 1

6
, if i = j = 0,

2J2 + 1

6
, if i = j = J,

ηmi
2[1− (ηmi )2]

, if i = j 6= 0, J,

− ci
cj

1

ηmi − ηmj
, if i 6= j

with

c0 = 2(−1)J , cJ = 2, cj = (−1)J−j , j = 1, 2, . . . , J − 1.

Based on the above overlapping idea, we introduce the partition of D with the following

grid points:

xL = x1
0 < x1

1 < · · · < x1
J−1 < x2

1 < · · · < xm−1
J−1 < xm

1 < · · · < xM
J−1 < xM

J = xR.
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Denote by

Φ̃ =
[
φ1
0(η

1), · · · , φ1
J−1(η

1), φ2
1(η

2), · · · , φM
J (ηM )

]⊤ ∈ R
M(J−1)+2,

P̃ =
[
p̃10(t), · · · , p̃1J−1(t), p̃

2
1(t), · · · , p̃MJ (t)

]⊤ ∈ R
M(J−1)+2,

Q̃ =
[
q̃10(t), · · · , q̃1J−1(t), q̃

2
1(t), · · · , q̃MJ (t)

]⊤ ∈ R
M(J−1)+2.

It follows from (2.12) and the fact D = ∪M
m=1V

m that the interpolation of functions p and q at

arbitrary collocation point x ∈ D reads as

p(x) ≈ Φ̃⊤P̃ , q(x) ≈ Φ̃⊤Q̃,

which, along with (2.13) yields

d2p(x)

dx2
≈ Φ̃⊤D̃(2)P̃ ,

d2q(x)

dx2
≈ Φ̃⊤D̃(2)Q̃, (2.15)

where

D̃
(2)
[0:J−1,0:J] =

4

∆x2
D

1,(2)
[0:J−1,0:J],

D̃
(2)
[m(J−1)+1:(m+1)(J−1),m(J−1):(m+1)(J−1)+1] =

4

∆x2
D

m+1,(2)
[1:J−1,0:J], m = 1, 2, . . . ,M − 2,

D̃
(2)
[(M−1)(J−1)+1:M(J−1)+1,(M−1)(J−1):M(J−1)+1] =

4

∆x2
D

M,(2)
[1:J,0:J],

and the remaining elements of the differential matrix D̃(2) are zero.

Consequently, combining the temporal semi-discretization (2.9) and the Chebyshev interpo-

lation (2.15), we can obtain the following full discretization of (2.5):

Un+1 = Un − i

2
τ
(
Φ̃⊤D̃(2)Un+1 + Φ̃⊤D̃(2)Un

)
(2.16)

for all n = 0, 1, . . . , N − 1, where Un = P̃n + iQ̃n and

P̃n =
[
p̃10(tn), · · · , p̃1J−1(tn), p̃

2
1(tn), · · · , p̃MJ (tn)

]⊤
,

Q̃n =
[
q̃10(tn), · · · , q̃1J−1(tn), q̃

2
1(tn), · · · , q̃MJ (tn)

]⊤
.

(c) ODDS algorithm

Based on the analytic expression (2.7) and the full discretization (2.16), we have the following

algorithm to compute the numerical solution to the one-dimensional stochastic NLS equation

(2.1).

Algorithm 2.1: Computing the Numerical Solution to the One-dimensional Stochastic

NLS Equation.

Choose the algorithm’s parameters: time interval [0, T ], space domain [xL, xR], temporal

step size τ , number of elements M , grid points J , orthonormal basis {ek(x)}k≥1 and its

truncation {ek(x)}Kk=1 to determine the Q-Wiener process ∆WK,n+1
j .

Step 1. For each n = 1, 2, . . . ,K − 1, j = 1, 2, . . . ,M(J − 1), take un
j as the initial datum,

solve (2.7) on the time interval Tn and get
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u∗
j = exp

{
− i
(
τλ|un

j |2 + ε∆WK,n+1
j

)}
un
j ,

where ∆WK,n+1
j = WK(tn+1, xj)−WK(tn, xj).

Step 2. Let U∗ = (u∗
1, u

∗
2, · · · , u∗

M(N−1))
⊤. For each n = 1, 2, . . . , N − 1, take U∗ as the

initial datum, solve (2.16) on the time interval Tn and get

Un+1 = U∗ − i

2
τ
(
Φ̃⊤D̃(2)Un+1 + Φ̃⊤D̃(2)U∗

)
.

Step 3. On the n-th time step (at time tn = nτ), generate the Gaussian random variables

βk(tn). According to (2.14), compute the elements of Dm,(2) for m = 1, 2, . . . ,M .

2.2. The ODDS algorithm for the multi-dimensional stochastic NLS equation

In this subsection, we present the ODDS algorithm for the d-dimensional stochastic NLS

equation. Without loss of generality we restrict our discussion to the case d = 2. Consider the

following two-dimensional stochastic nonlinear system:

idu =
[
uxx + uyy + λ|u|2u

]
dt+ εu ◦ dW (t), t ∈ (0, T ] (2.17)

with an initial condition

u(0, x, y) = u0(x, y), x ∈ D = [xL, xR]× [yL, yR],

and the boundary conditions

u(t, xL, y) = f1(t), u(t, xR, y) = g1(t), t ∈ (0, T ], y ∈ [yL, yR],

u(t, x, yL) = f2(t), u(t, x, yR) = g2(t), t ∈ (0, T ], x ∈ [xL, xR].

By using a similar technique as for the one-dimensional case, we split (2.17) into the linear

part and the nonlinear part. To define the ODDS algorithm for the two-dimensional case, the

main difference lies in dealing with the linear part

idu = (uxx + uyy)dt.

We use the local one dimensional idea to split the above equations as

idu = uxxdt, (2.18)

idu = uyydt. (2.19)

Then, the algorithm developed in the previous subsection can be utilized to approximate the

above four subsystems. The ODDS algorithm for the two-dimensional stochastic NLS equation

(2.17) is presented as follows.

Algorithm 2.2: The ODDS Algorithm for the Two-dimensional Stochastic NLS Equation.

Choose the algorithm’s parameters: time interval [0, T ], space domain [xL, xR] ×[yL, yR],

temporal step size τ , number of elements M1 and M2 in x, y-directions, respectively, grid

points J1 and J2 in x, y-directions, respectively, orthonormal basis {ek1,k2
(x, y)}k1,k2≥1 and

its truncation {ek(x, y)}Kk1,k2=1 to determine the Q-Wiener process ∆WK,n+1
j1,j2

.
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Step 1. For each n = 1, 2, . . . , N−1, j1 = 1, 2, . . . ,M1(J1−1) and j2 = 1, 2, . . . ,M2(J2−1),

take un
j1,j2

as the initial datum, solve (2.7) on the time interval Tn and get

u∗
j1,j2

= exp
{
− i
(
τλ
∣∣un

j1,j2

∣∣2 + ε∆WK1,K2,n+1
j1,j2

)}
un
j1,j2

,

where ∆WK1,K2,n+1
j1,j2

= WK1,K2(tn+1, xj1 , yj2)−WK1,K2(tn, xj1 , yj2).

Step 2. Let U∗ = (u∗
1,1, u

∗
2,1, · · · , u∗

M1(J1−1),1, u
∗
1,2, u

∗
2,2, · · · , u∗

M1(J1−1),M2(J2−1))
⊤. Take U∗

as the initial datum, solve (2.18) on the time interval Tn by (2.16) and get

U∗∗ = U∗ − i

2
τ
(
Φ̃⊤D̃(2)U∗∗ + Φ̃⊤D̃(2)U∗

)
.

Step 3. For each n = 1, 2, . . . , N − 1, take U∗∗ as the initial datum, solve (2.19) on the

time interval Tn by (2.16) and get

Un+1 = U∗ − i

2
τ
(
Φ̃⊤D̃(2)Un+1 + Φ̃⊤D̃(2)U∗∗

)
.

Step 4. On the n-th time step (at time tn = nτ), generate the Gaussian random variables

βk1,k2
(tn). According to (2.14), compute the elements of Dm,(2) for m = 1, 2, . . . ,M1 and

m = 1, 2, . . . ,M2.

Remark 2.1. For the S-dimensional stochastic NLS equation with S ≥ 3, we only need to

split the linear part of the considered system into S subsystems

idu = uxsxs
dt, s = 1, 2, . . . , S,

and then use the similar algorithm as in Algorithm 2.2.

3. Numerical Experiments

In this section we provide several numerical examples to illustrate the accuracy and ca-

pability of the algorithms developed in the previous section under the homogeneous Dirichlet

boundary conditions or the inhomogeneous Dirichlet boundary conditions.

We first present some preliminaries used throughout the following numerical implementation

of Algorithms 2.1 and 2.2.

3.1. Preliminaries of the numerical implementation

For d=1, we take the eigenvalues {ηk}Kk=1 and the orthonormal basis {ek}Kk=1 of L
2([xL, xR])

as

ek(x) =
√
2 sin(kπx), ηk =

1

k3
,

which implies

∆WK,n+1
j =

K∑

k=1

√
2

xR − xL

√
1

k3
sin

(
kπ(xj − xL)

xR − xL

)(
βk(tn+1)− βk(tn)

)
.

Here and in what follows, we take K = 500.
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For d = 2, we take the eigenvalues {ηk1,k2
}Kk1,k2=1 and the orthonormal basis {ek1,k2

}Kk1,k2=1

of L2([xL, xR]× [yL, yR]) as

ek1,k2
(x, y) = 2 sin(k1πx) sin(k2πy), ηk1,k2

=
1

(
k21 + k22

)2 ,

which implies

∆WK,n+1
j1,j2

=
K∑

k1,k2=1

2

k21 + k22

√
1

(xR − xL)(yR − yL)
sin

(
k1π(xj1 − xL)

xR − xL

)

× sin

(
k2π(yj2 − yL)

yR − yL

)(
βk1,k2

(tn+1)− βk1,k2
(tn)

)
.

Denote

Un =
[
q̃11(tn), · · · , q̃1J−1, q̃

2
1 , · · · , q̃MJ−1(tn), p̃

1
1(tn), · · · , p̃1J−1, p̃

2
1, · · · , p̃MJ−1(tn)

]⊤
,

then the full discretization (2.16) can be rewritten as an algebraic system

(A⊗B + C)Un+1 = (−A⊗B + C)Un + F, (3.1)

where B = D̃
(2)
[1:M(J−1),1:M(J−1)], F ∈ R

2M(J−1) describes the boundary conditions, and

A =



−τ

2
0

0
τ

2




2×2

, C =

[
0 I

I 0

]

2M(J−1)×2M(J−1)

.

We will compute (3.1) using the Matlab command Algorithm 3.1. Furthermore, once the

differential matrix Dm,(2) is known, then (3.1) provides a feasible way to solve the stochastic

NLS equation. The Matlab command Algorithm 3.2 relies on (2.14) to compute the elements

of Dm,(2) for m = 1, 2, . . . ,M . Since no confusion can arise, we simply drop the superscript

m, (2) on Dm,(2).

In order to demonstrate the efficiency and superiority of the proposed algorithm, we compare

the ODDS algorithm with the following ones:

(1) The stochastic multi-symplectic method (SMM for short, see [23, Eq. (2.24)])

i
(
δ+t u

n
j+ 1

2

+ δ+t u
n
j− 1

2

)
= 2δ+x δ

−
x u

n+ 1

2

j + λ
∣∣∣un+ 1

2

j+ 1

2

∣∣∣
2

u
n+ 1

2

j+ 1

2

+ λ
∣∣∣un+ 1

2

j− 1

2

∣∣∣
2

u
n+ 1

2

j− 1

2

+ εu
n+ 1

2

j+ 1

2

Ẇ
n+ 1

2

j+ 1

2

+ εu
n+ 1

2

j− 1

2

Ẇ
n+ 1

2

j− 1

2

, (3.2)

where

δ+t u
n =

un+1 − un

τ
, δ+x uj =

uj+1 − uj

hx

, δ−x uj =
uj − uj−1

hx

.

(2) The finite difference splitting Crank-Nicolson scheme (FDSCN for short, see [14, Eq. (57)])

u∗
j = un

j + iτ

(
δ+x δ

−
x u

n+ 1

2
,∗

j +
λ

2

(∣∣un
j

∣∣2 + |u∗
j |2
)
u
n+ 1

2
,∗

j

)
,

un+1
j = exp

(
− iε∆Wn+1

j

)
u∗
j ,

(3.3)

where

un+ 1

2
,∗ =

un + u∗

2
.
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Algorithm 3.1: Code to compute the solution of a large sparse algebraic equation

Gx = b, where G ∈ R
L×L is a sparse matrix and b ∈ R

L with L = 2M(J − 1). The

input x0 is an arbitrary non-zero column vector of length L.

1 func t i on x=matr ix so lv e ( x0 ,G, b , L)

2 r=b−G∗x0 ; u=ze ro s ( l ength ( x0 ) , 1 ) ;

3 whi le max( abs ( r ))>0.00001

4 v ( : ,1 )= r /norm( r ) ;

5 f o r j =1:m

6 d=G∗v ( : , j ) ;
7 f o r i =1: j

8 H( i , j )=v ( : , i ) ’∗d ;
9 end

10 u ( : )=0 ;

11 f o r i =1: j

12 u=H( i , j )∗v ( : , i )+u ;

13 end

14 u=d−u ; H( j +1, j )=norm(u ) ;

15 i f (H( j +1, j ) <0 .0001 | | j==L)
16 e=ze ro s ( j +1 ,1) ; e (1)=norm( r ) ;

17 y=pinv (H( 1 : j +1 ,1: j ) )∗ e ;
18 x0=x0+v ( : , 1 : j )∗y ; r=b−G∗x0 ;
19 break ;

20 end

21 v ( : , j+1)=u/H( j +1, j ) ;

22 end

23 end

Algorithm 3.2: Code to Compute the Differential Matrix D ∈ R
(J+1)×(J+1).

1 func t i on D=chebyshve so lv e ( J )

2 D=zero s ( J+1,J+1);

3 K=(0:J ) ’ ; x=cos ( p i ∗K/J ) ;
4 c=ones ( J+1 ,1) ; c (1)=2; c ( J+1)=2;

5 f o r k=1:J+1

6 f o r j =1:J+1

7 i f ( j==1&k==1) | |( j==J+1&k==J+1)

8 D(k , j )=(2∗Jˆ2+1)/6;

9 e l s e i f j==k

10 D(k , j )=−x (k)/2/(1−x(k ) ˆ 2 ) ;

11 e l s e

12 D(k , j )=c (k )/ c ( j )∗(−1)ˆ(k+j )/ ( x (k)−x( j ) ) ;

13 end

14 end

15 end

16 D(k , j )=−D(k , j ) ;
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3.2. Numerical examples

After these preparations, now we concentrate on the numerical performance of the ODDS

algorithms.

Example 3.1. In this example we show the soliton propagation at different instants of the

following equation:

idu =
[
uxx + |u|2u

]
dt+ εu ◦ dW (t), t ∈ (0, T ] (3.4)

in Figs. 3.1 and 3.2 with ε = 0.01, 0.05 and the initial condition

u0(x) =

√
6

5
sech

(√
2x
)
eix.

As is stated in (2.3), Eq. (3.4) possesses the charge conservation law almost surely under the

homogeneous or periodic boundary conditions. Here, we verify this result by using our algorithm

Fig. 3.1. The soliton propagation of (3.4) with inhomogeneous Dirichlet boundary conditions in

[−20, 100] and ε = 0.01. J = 30,M = 10, T = 150, τ = 0.015.

Fig. 3.2. The soliton propagation of (3.4) with inhomogeneous Dirichlet boundary conditions in

[−20, 100] and ε = 0.05. J = 30,M = 10, T = 150, τ = 0.015.
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with the homogeneous Dirichlet boundary conditions. Fig. 3.3 presents the evolution of the

discrete charge conservation law and the conservation errors of Algorithm 2.1 with ε = 0.01

and 0.05. We observe a good agreement with the continuous result.

Fig. 3.4 investigates the evolution of the discrete energy of the ODDS algorithm for dif-

ferent values of ε = 0.01 and 0.05, where the blues lines denote the discrete energies over 50

trajectories, the red line represents the discrete averaged energy, and the black line shows the

discrete energy in the deterministic case. We see from the numerical experiment results that

the discrete averaged energy possesses a linear growth property over 50 trajectories.

Now we compare the computational costs of the ODDS Algorithm 2.1, the SMM method

(3.2) and the FDSCN scheme (3.3) for one-dimensional problem (3.4) under the homogeneous

Dirichlet boundary conditions. Fig. 3.5 demonstrates the computational efficiency of our ODDS

algorithm in comparison with the SMM method and the FDSCN scheme. The reported CPU

time is in seconds.

Fig. 3.3. Evolution of the discrete charge (left), and the conservation error (right), over one trajectory

with ε = 0.01, 0.05. Homogeneous Dirichlet boundary conditions in [−20, 100]. J=30,M=10, T=150,

τ = 0.015.

Fig. 3.4. Evolution of the discrete energies for ε = 0.01 (left), and ε = 0.05 (right). Homogeneous

Dirichlet boundary conditions in [−20, 100]. J = 30, M = 10, T = 150, τ = 0.015.
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Fig. 3.5. Efficiency for the ODDS algorithm, the SMM method and the FDSCN scheme for (3.4).

Homogeneous Dirichlet boundary conditions in [−20, 100]. J = 30,M = 20, T = 150, τ = 0.015. The

mesh sizes of the SMM method and the FDSCN scheme are given by hx = 0.2 (i.e. J = 600, M = 1).

Example 3.2. In this example we present the double soliton collision of (3.4) with the initial

condition

u0(x) =

√
6

5
sech

(√
2x
)
e2ix +

√
3

5
sech

(√
2(x− 30)

)
e0.5i(x−30). (3.5)

The solution is simulated with the inhomogeneous Dirichlet boundary conditions in [−20, 150]

along one trajectory with ε = 0.01. Figs. 3.6-3.8 show the double soliton collisions at different

times t = 0, 12, 60 for the real part p, the imaginary part q and the module u, respectively.

Fig. 3.6. The double soliton collision of (3.4) for the real part p with the initial condition (3.5) along

one trajectory. Inhomogeneous Dirichlet boundary conditions in [−20, 150]. J = 20,M = 5, T = 60,

τ = 0.006.
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Fig. 3.7. The double soliton collision of (3.4) for the imaginary part q with the initial condition (3.5)

along one trajectory. Inhomogeneous Dirichlet boundary conditions in [−20, 150]. J=20,M=5, T=60,

τ = 0.006.

Fig. 3.8. The double soliton collision of (3.4) for the module u with the initial condition (3.5) along

one trajectory. Inhomogeneous Dirichlet boundary conditions in [−20, 150]. J = 20,M = 5, T = 60,

τ = 0.006.
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Example 3.3. In this example we consider the following two-dimensional stochastic NLS equa-

tion:

idu =
[
uxx + uyy + |u|2u

]
dt+ εu ◦ dW (t), t ∈ (0, T ]. (3.6)

We choose the initial condition

u0 = A exp
{
c1x

2 + c2y
2
}
, (3.7)

where A, c1 and c2 are constants. The solution is computed with the inhomogeneous Dirichlet

boundary conditions in [−10, 10]× [−10, 10] with various sizes of the noise ε = 1, 5 and 10. The

results are presented in Figs. 3.9-3.11.

Furthermore, we choose a larger spatial domain [−60, 60] × [−60, 60] to demonstrate the

algorithm’s superiority under the inhomogeneous Dirichlet boundary conditions. The results

are presented in Figs. 3.12-3.14.

Example 3.4. Without loss of generality, in this numerical example we restrict our discussion

to the two-dimensional stochastic NLS equation (3.6) with ε = 1 to show the computational

efficiency of the ODDS algorithm under the homogeneous Dirichlet boundary conditions. We

work in the same setting as in Example 3.3.

First, we apply the SMM method (3.2) and the FDSCN scheme (3.3) to the two-dimensional

problem (3.6). Fig. 3.15 presents the computational cost of our ODDS algorithm in comparison

with the SMM method and the FDSCN scheme. The reported CPU time is in seconds. From

the figure, we can see that the ODDS algorithm can reduce the heavy computational load and

is highly competitive.

Fig. 3.9. The solution of (3.6) for the module u with the initial condition (3.7) along one trajec-

tory. Inhomogeneous Dirichlet boundary conditions in [−10, 10] × [−10, 10]. A = 1, c1 = c2 = −1/2,

J1 = J2 = 32,M1 = M2 = 4, T = 3, τ = 0.01, ε = 1.
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Fig. 3.10. The solution of (3.6) for the module u with the initial condition (3.7) along one trajec-

tory. Inhomogeneous Dirichlet boundary conditions in [−10, 10] × [−10, 10]. A = 1, c1 = c2 = −1/2,

J1 = J2 = 32,M1 = M2 = 4, T = 3, τ = 0.01, ε = 5.

Fig. 3.11. The solution of (3.6) for the module u with the initial condition (3.7) along one trajec-

tory. Inhomogeneous Dirichlet boundary conditions in [−10, 10] × [−10, 10]. A = 1, c1 = c2 = −1/2,

J1 = J2 = 32,M1 = M2 = 4, T = 3, τ = 0.01, ε = 10.
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Fig. 3.12. The solution of (3.6) for the module u with the initial condition (3.7) along one trajec-

tory. Inhomogeneous Dirichlet boundary conditions in [−60, 60] × [−60, 60]. A = 1, c1 = c2 = −1/2,

J1 = J2 = 32,M1 = M2 = 4, T = 3, τ = 0.01, ε = 1.

Fig. 3.13. The solution of (3.6) for the module u with the initial condition (3.7) along one trajec-

tory. Inhomogeneous Dirichlet boundary conditions in [−60, 60] × [−60, 60]. A = 1, c1 = c2 = −1/2,

J1 = J2 = 32,M1 = M2 = 4, T = 3, τ = 0.01, ε = 5.
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Fig. 3.14. The solution of (3.6) for the module u with the initial condition (3.7) along one trajec-

tory. Inhomogeneous Dirichlet boundary conditions in [−60, 60] × [−60, 60]. A = 1, c1 = c2 = −1/2,

J1 = J2 = 32,M1 = M2 = 4, T = 3, τ = 0.01, ε = 10.

Fig. 3.15. Efficiency for the ODDS algorithm, the SMM method and the FDSCN scheme for (3.6) along

one trajectory. Homogeneous Dirichlet boundary conditions in [−10, 10]×[−10, 10]. A=1, c1=c2=−1/2,

J1 = J2 = 32,M1 = M2 = 4, T = 3, τ = 0.01, ε = 1. The mesh sizes of the SMM method and the

FDSCN scheme are given by hx = hy = 5/32 (i.e. J1 = J2 = 128,M1 = M2 = 1).
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Example 3.5. We conclude this section with the mean-square convergence order in the tempo-

ral direction of the proposed ODDS algorithm for the one-dimensional stochastic NLS equation

(2.1) with the initial condition u0 = sin(πx).

To compute the mean-square error, we run P independent trajectories up(t, ·) and up,n(·)

Err :=
(
E

[∥∥u(T, ·)− uN(·)
∥∥2
l2

]) 1

2

=

(
1

P

P∑

p=1

∥∥up(T, ·)− up,N (·)
∥∥2
l2

) 1

2

.

We take time T = 1/4, [xL, xR] = [−1, 1] and P = 500. The reference solution is computed

by the ODDS algorithm with small temporal step size τ = 2−10. The number of trajectories

P = 500 is sufficiently large for the statistical errors not to significantly hinder the mean-square

errors. The mean-square error is plotted in Table 3.1. The observed rates of convergence of the

ODDS algorithm in time is close to 0.5∼1. It is meaningful to give the mean-square convergence

analysis theoretically in the future work.

Table 3.1: Mean-square errors of the ODDS algorithm for λ = 1 and ε = 0.01.

τ Err Order

2−4 5.1163E-1 –

2−5 2.6093E-1 0.97

2−6 1.2133E-1 1.10

2−7 7.0089E-2 0.79

2−8 5.2949E-2 0.40

2−9 2.7614E-2 0.93

4. Concluding Remarks

The calculation of stochastic NLS equation is an interesting and important problem. One

of the classical techniques is by the operator splitting. In this work, we have developed a high

efficient ODDS algorithm to solve the stochastic NLS equation with a multiplicative noise by

combining the splitting technique. Several numerical examples are presented to illustrate the

capability of the algorithm. Although not considered in this work, this algorithm is flexible for

the coupled stochastic NLS equation, the stochastic wave equation and the stochastic Maxwell

equations, and has excellent computational efficiency.

One difficult and challenging future work is the mean-square convergence analysis of the

ODDS algorithm. On one hand, the difficulty in the error analysis of the proposed algorithm

for the stochastic NLS equation in general is the lack of regularity of its solution. On the

other hand, one general approach to analyze the convergence order of the overlapping and

non-overlapping domain decomposition algorithms is the formal language theory, however it is

not a generic property. We do not know whether the numerical algorithms of the stochastic

partial differential equation possess the formal language property. This is an interesting and

challenging topic for the future study.
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