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Abstract. Scattered data interpolation aims to reconstruct a continuous (smooth) func-
tion that approximates the underlying function by fitting (meshless) data points. There
are extensive applications of scattered data interpolation in computer graphics, fluid
dynamics, inverse kinematics, machine learning, etc. In this paper, we consider a novel
generalized Mercel kernel in the reproducing kernel Banach space for scattered data
interpolation. The system of interpolation equations is formulated as a multilinear sys-
tem with a structural tensor, which is an absolutely and uniformly convergent infinite
series of symmetric rank-one tensors. Then we design a fast numerical method for
computing the product of the structural tensor and any vector in arbitrary precision.
Whereafter, a scalable optimization approach equipped with limited-memory BFGS
and Wolfe line-search techniques is customized for solving these multilinear systems.
Using the Łojasiewicz inequality, we prove that the proposed scalable optimization
approach is a globally convergent algorithm and possesses a linear or sublinear con-
vergence rate. Numerical experiments illustrate that the proposed scalable optimiza-
tion approach can improve the accuracy of interpolation fitting and computational
efficiency.
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1 Introduction

Scattered data consists of a set of data sites X :={x1,. . .,xN}⊂Ω and corresponding values
V := { f1,. . ., fN} ⊂R, where Ω⊆R

d is locally compact. Here, “scattered” means that
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the data sites have no structure or order between their relative locations. The values
come from an underlying (not necessarily known) function. Scattered data interpolation
aims to reconstruct a (typically smooth) function s(x) that approximates the underlying
function and particularly satisfies

s(xi)= fi, ∀i=1,.. . ,N. (1.1)

Scattered data interpolation has extensive applications in computer graphics [2], fluid
dynamics [14], inverse kinematics [17], machine learning [37], etc. When data sites en-
joy a well mesh geometry, plenty of methods such as wavelets, multivariant splines, and
finite elements have been used for the interpolation problem (1.1). However, in the con-
text of scattered data interpolation, meshless methods including radial basis functions [9]
and kernel-based approximations [37] are promising. The monograph [41] provides more
details. We focus on kernel-based methods in this paper.

To separate the influence between data sites and values, functions uj : Rd → R

(j=1,.. . ,N) that depend only on X are chosen to form

s(x)=
N

∑
j=1

f juj(x).

We note that the Lagrange interpolation is equipped with uj(xi)= δij for i, j∈{1,.. . ,N},
where δij stands for the Kronecker delta. However, due to the Mairhuber-Curtis theorem
[41, Theorem 2.3], continuous functions {uj} satisfying uj(xi)= δij may not always exist
and be unique when d≥2.

Kernel methods [37] are a class of simple and powerful approaches for solving the
interpolation problem (1.1). The reproducing kernel Hilbert space (RKHS) provides a re-
producing kernel K : Ω×Ω→R and the associated interpolation function is defined as

s(x)=
N

∑
j=1

cjK(x,xj), (1.2)

where cj for j=1,.. .,N are undetermined real coefficients. The kernel K ensures that ma-

trix A:=[K(xi,xj)]∈RN×N is positive definite or conditionally positive definite for any set
X⊂Ω of data sites [41]. Fasshauer and Ye [16] gave a unified theory for conditionally pos-
itive definite kernels. Combining the interpolation condition (1.1) and the interpolation
function (1.2), we get the following linear system:

Ac=b, (1.3)

where c :=(c1,. . .,cN)
T is an undetermined vector and b :=( f1,. . ., fN)

T is the value vector.
By solving the linear system (1.3), we determine coefficients in (1.2) and hence obtain the
interpolation function s(x).

Using the novel generalized Mercel kernel in the reproducing kernel Banach space
(RKBS) [15], Xu and Ye [43] proposed the following system of polynomial equations for
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the interpolation problem (1.1):

∑
n∈N

(
N

∑
k=1

ckφn(xk)

)2m−1

φn(xi)= fi, ∀i=1,.. . ,N, (1.4)

where m is a positive integer and ck’s are undetermined real coefficients. We will re-
view the derivative process and the definition of φn in Section 2. From the viewpoint of
multilinear algebra, there exists a 2m-th order N dimensional tensor

A=[ai1 ...i2m
] :=

(

∑
n∈N

φn(xi1)···φn(xi2m
)

)
∈R[2m,N].

Since all of the entries ofA are invariant under any index permutation,A is called a sym-
metric tensor. Further, for c=(c1,. . .,cN)

T∈RN , we define

Ac2m := ∑
i1,...,i2m

ai1···i2m
ci1 ···ci2m

∈R.

It is straightforward to see

Ac2m = ∑
n∈N

(
N

∑
k=1

ckφn(xk)

)2m

≥0.

Hence, A is a positive semidefinite tensor. The system of polynomial equations (1.4) is
indeed a multilinear system

Ac2m−1=b, (1.5)

where

Ac2m−1 :=

[

∑
i2,···,i2m

aii2 ···i2m
ci2 ···ci2m

]N

i=1

∈RN .

It is easy to see that the multilinear system (1.5) reduces to a linear system (1.3) when
m = 1. Recently, Ye [44] pointed out that the multilinear system (1.5) exists the unique
solution.

Moreover, in numerical partial differential equations [4,13], data mining [26], and ten-
sor complementarity problems [31], multilinear systems (1.5) play important roles [35].
To solve multilinear systems, there are roughly three kinds of methods.

First, multilinear systems are a special class of algebraic systems of polynomial equa-
tions, which can be solved by elimination theorem [38] and homotopy continuation
[18, 24].

Second, by exploiting structural tensors in multilinear systems, various tensor algo-
rithms were studied extensively. Li and Ng [26] proposed Jacobi and Gauss-Seidel it-
erative methods for solving sparse nonnegative tensor equations. When the coefficient
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tensor of a multilinear system is a nonsingular M-tensor, Ding and Wei [13] proved that
the multilinear system has a unique positive solution if the right-hand side is a posi-
tive vector. Then, they utilized the Jacobi iteration, the Gauss-Seidel iteration, and New-
ton’s method for solving multilinear systems with M-tensors. Liu et al. [29] designed
a tensor splitting method for multilinear systems with strong M-tensors. Furthermore,
Li et al. [25] proposed preconditioned tensor splitting methods. Xie et al. [42] solved the
multilinear system with symmetric M-tensors by some tensor methods. He et al. [19]
showed that solving multilinear systems with M-tensors is equivalent to solving nonlin-
ear systems of equations where the involving functions are P-functions. Based on this re-
sult, they proposed a Newton-type method to solve multilinear systems with M-tensors.
Wang et al. [39, 40] utilized continuous time neural network for solving multilinear sys-
tems with M-tensors.

Finally, for solving general multilinear systems, well-designed nonlinear optimiza-
tion algorithms become an active research issue. Li et al. [23] extended Jacobi, Gauss-
Seidel and successive over-relaxation iterative methods for system of linear equations to
solve general multilinear equations. Under mild conditions, these tensor splitting meth-
ods were proved to be globally convergent and locally R-linearly convergent. Li et al. [27]
developed a hybrid alternating projection algorithm for solving three-order tensor equa-
tions. Lv and Ma [32] used a Levenberg-Marquardt method for solving multilinear sys-
tems and proved its global convergence and locally quadratic convergence under the
local error bound condition.

For solving large-scale multilinear systems, it is a time-consuming and difficult cal-
culation problem to compute the tensor-vector product Ac2m−1, where A∈R[2m,N] and
c∈RN . Many existing algorithms were interested in dense tensors (e.g. M-tensors and
nonnegative tensors) that require aboutO(N2m) flops to compute the tensor-vector prod-
uct. In this paper, by exploiting the special structure of an absolutely and uniformly con-
vergent infinite series of symmetric rank-one tensors, we propose a fast computational
method for the tensor-vector product, which only costs about O(NP) flops. Numeri-
cal experiments confirm this advantage. For related works on fast computations of the
products between structural tensors and vectors, we refer to [11, 12].

In this paper, we concentrate on the multilinear system with a novel class of struc-
tural tensors, which arise from the generalized Mercel kernel for scattered data interpo-
lation. The structural tensor is an absolutely and uniformly convergent infinite series of
symmetric rank-one tensors. Since the sum tensor of the infinite series is unavailable,
we turn to an approximate finite sum of symmetric rank-one tensors, i.e. a symmetric
canonical polyadic tensor. By exploiting the canonical polyadic tensor, a fast computa-
tion method is proposed for computing the product of the novel structural tensor and
any vector in arbitrary precision. Whereafter, using this fast computation, a first-order
optimization approach equipped with limited-memory BFGS and Wolfe line search tech-
niques is customized for solving multilinear systems with canonical polyadic tensors.
Using the Łojasiewicz inequality, the proposed optimization approach is globally con-
vergent with a locally linear or sublinear convergent rate. Numerical experiments on
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one and two dimensional scattered data interpolation problems illustrate that the tensor-
based multilinear system and the customized optimization approach can improve the
accuracy of interpolation fitting and computational efficiency.

The remainder of this paper is organized as follows. We give in Section 2 some pre-
liminary knowledge on the generalized Mercel kernel for scattered data interpolation and
the derivation of structural multilinear systems. In Section 3, a fast numerical approach
for computing the product of the structural tensor and any vector is proposed. Then
a scalable optimization algorithm is customized for solving these multilinear systems.
Convergence analysis of the proposed scalable optimization algorithm is presented in
Section 4. In Section 5, preliminary numerical experiments on one and two dimensional
interpolation problems are conducted to evaluate the efficiency of the proposed method.
Finally, we give a brief conclusion in Section 6.

2 Preliminary

At the beginning, we review classical Mercer kernels in RKHS. Then, generalized Mer-
cer kernels are introduced in RKBS. As a byproduct of generalized Mercer kernels, the
multilinear system, which is of most interest to us, is derived.

2.1 Mercer kernels

Let Ω be a locally compact Housdorff space equipped with regular Borel measure µ and
let C(Ω×Ω) be the set of continuous functions on Ω×Ω. The Mercer theorem says
that a continuous symmetric positive definite kernel K ∈C(Ω×Ω) has countable posi-
tive eigenvalues {λn} and associated continuous eigenfunctions {en}, that is,

∫

Ω
K(x,y)en(x)µ(dx)=λnen(y), ∀n∈N.

Furthermore, the kernel K possesses the absolutely and uniformly convergent represen-
tation

K(x,y)= ∑
n∈N

λnen(x)en(y), ∀x,y∈Ω. (2.1)

The kernel satisfying (2.1) is called a Mercer kernel. For convenience, we define

φn :=λ
1
2
n en, ∀n∈N, (2.2)

and rewrite the Mercer kernel as

K(x,y)= ∑
n∈N

φn(x)φn(y), ∀x,y∈Ω.

The classical Mercer kernel is always a reproducing kernel of some separable RKHS and
the Mercer kernel representation of this RKHS guarantees the isometrical isomorphism
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onto the standard 2-norm space of countable sequences [41, Theorem 10.29]. Some fre-
quently used Mercer kernels are as follows.

The univariate min kernel with the homogeneous boundary condition on [0,1] is de-
fined by

Ψ1(x,y) :=min{x,y}−xy, 0≤ x,y≤1,

which is a special case of the Brownian bridge kernels [10,36,43]. Eigenvalues and eigen-
functions of the univariate min kernel are

ρn :=
1

n2π2
, ϕn(x) :=

√
2sin(nπx), ∀n∈N,

respectively. Then, the associated integral-type min kernel is defined by

K1(x,y) :=
∫ 1

0
Ψ1(x,z)Ψ1(z,y)dz=





−1

6
(x3−x3y−xy3+3xy2−2xy), 0≤ x≤y≤1,

−1

6
(y3−xy3−x3y+3x2y−2xy), 0≤y≤ x≤1.

The eigenvalues and eigenfunctions of K1 are respectively

λ1,n :=ρ2
n, e1,n := ϕn, ∀n∈N.

Next, on the d-dimensional cubic [0,1]d, we define the product kernel

Ψd(x,y)=
d

∏
k=1

Ψ1(xk,yk),

where

x :=[xk]
d
k=1, y :=[yk]

d
k=1∈ [0,1]d.

The d-dimensional integral-type kernel is represented as

Kd(x,y)=
∫

[0,1]d
Ψd(x,z)Ψd(z,y)dz=

d

∏
k=1

K1(xk,yk), ∀x,y∈ [0,1]d.

Eigenvalues and eigenfunctions of Kd are respectively

λd,n :=
d

∏
k=1

λ1,nk
=

d

∏
k=1

ρ2
nk

, ed,n :=
d

∏
k=1

e1,nk
(xk)=

d

∏
k=1

ϕnk
(xk)

for n∈Nd. Then, functions φd,n’s can be defined by (2.2) similarly. Interested readers can
refer to Xu and Ye [43] for more kinds of Mercer kernels.
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2.2 Generalized Mercer kernel

Let Ω and Ω′ be locally compact Housdorff spaces equipped with regular Borel mea-
sures µ and µ′, respectively. We consider the kernel K∈L0(Ω×Ω′), where L0(Ω×Ω′) is
the collection of all real measurable functions defined on Ω×Ω′.

Definition 2.1 ([43, Definition 3.1]). A kernel K∈L0(Ω×Ω′) is called a generalized Mercer
kernel induced by the left-sided and right-sided expansion sets

SK :={φn |n∈N}⊆L0(Ω), S ′K :={φ′n |n∈N}⊆L0(Ω
′),

if the kernel K can be written as the pointwise convergent representation

K(x,y)= ∑
n∈N

φn(x)φ
′
n(y), ∀x∈Ω, ∀y∈Ω′.

It is easy to see that classical Mercer kernels are symmetric, i.e. K(x,y)=K(y,x), which
are special cases of generalized Mercel kernels. Motivated by the relationship between
RKHS with the classical Mercer kernel and the 2-norm space, Xu and Ye [43] studied the
isometrical isomorphisms about p-norm and q-norm spaces.

Let 1< p,q<∞ such that p−1+q−1=1. The space

Bp
K(Ω) :=

{
s := ∑

n∈N
anφn

∣∣∣∣ ∑
n∈N
|an|p<∞

}

composed of functions defined on Ω is equipped with the semi-norm

‖s‖Bp
K (Ω) :=

(

∑
n∈N
|an |p

) 1
p

.

Similarly, define the space Bq
K′(Ω

′) on Ω′ as

Bq
K′(Ω

′) :=

{

∑
n∈N

bnφ′n

∣∣∣∣ ∑
n∈N
|bn|q <∞

}
,

where K′ is the adjoint kernel of K. Xu and Ye [43] pointed out that Bp
K(Ω) and Bq

K′(Ω
′)

are isometrical isomorphisms of p-norm and q-norm spaces, respectively. Hence, the
Gâteaux derivative of s∈Bp

K(Ω) can be computed by the Gâteaux derivative of ‖·‖p, i.e.

the Gâteaux derivative of s∈Bp
K(Ω) is

∑
n∈N

an|an|p−2

‖a‖p−1
p

φ′n∈B
q
K′(Ω

′), (2.3)

where ‖a‖p :=(∑n∈N |an|p)1/p.
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2.3 Derivation of the multilinear system

Now, we consider the problem of scattered data interpolation with a regularized empiri-
cal risk [43]

Tp(s) :=
1

N

N

∑
k=1

L(xk,yk,s)+R
(
‖s‖Bp

K(Ω)

)
, (2.4)

where the regular function R :[0,∞)→[0,∞) is convex and strictly increasing, and the loss
function L : Ω×R×R→ [0,∞) is defined such that s 7→ L(x,y,s) is a convex map for each
fixed x∈Ω and each fixed y∈R. Suppose that the right-sided kernel set

K′K :={K(x,·) |x∈Ω}⊆Bq
K′ (Ω

′)

is linearly independent. Then, the global solution of (2.4) has the closed-form formula

s= ∑
n∈N

anφn∈Bp
K(Ω),

the Gâteaux derivative of which is a linear combination

N

∑
k=1

βkK(xk,·)=
N

∑
k=1

βk ∑
n∈N

φn(xk)φ
′
n∈B

q
K′(Ω

′). (2.5)

Comparing coefficients between (2.3) and (2.5), we have

an|an |p−2

‖a‖p−1
p

=
N

∑
k=1

βkφn(xk), ∀n∈N.

By taking ck :=‖a‖p−1
p βk =‖a‖1/(q−1)

p βk for all k=1,.. . ,N, it yields

an|an|p−2=
N

∑
k=1

ckφn(xk), ∀n∈N.

Solving the above equation, we obtain

an =
N

∑
j=1

cjφn(xj)

∣∣∣∣
N

∑
k=1

ckφn(xk)

∣∣∣∣
q−2

, ∀n∈N.

That is to say, the global solution of (2.4) is

s= ∑
n∈N

(
N

∑
j=1

cjφn(xj)

∣∣∣∣
N

∑
k=1

ckφn(xk)

∣∣∣∣
q−2
)

φn.

Then the following theorem holds.
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Theorem 2.1 ( [43, Theorem 5.10]). Consider the optimization problem (2.4) with q= 2m and
p=2m/(2m−1). Then the unique global solution of

min
s∈Bp

K(Ω)
Tp(s)

has the finite dimensional representation

s(x)= ∑
n∈N

(
N

∑
k=1

ckφn(xk)

)2m−1

φn(x), ∀x∈Ω,

where coefficients c1,. . .,cN are undetermined. The norm of s(x) is

‖s(x)‖Bp
K (Ω)=


∑

n∈N

(
N

∑
k=1

ckφn(xk)

)2m



1− 1
2m

.

Now, we are ready to derive a mathematical model, which is a multilinear system,
for the application of scattered data interpolation. Given a set of scattered data sites
X := {x1,. . .,xN}⊆Ω⊂R

d and corresponding values V := { f1,. . ., fN}⊂R, we try to find
an interpolating function s(x)∈Bp

K(Ω) such that s(xi) = fi for i = 1,.. .,N. According to
Theorem 2.1, we can rewrite the interpolation condition as

fi = s(xi)= ∑
n∈N

(
N

∑
k=1

ckφn(xk)

)2m−1

φn(xi)

=
N

∑
k2=1

···
N

∑
k2m=1

ck2
···ck2m

(

∑
n∈N

φn(xi)φn(xk2
)···φn(xk2m

)

)
(2.6)

for all i=1,.. . ,N. Let un=(φn(x1),. . .,φn(xN))
T for n∈N. We introduce a symmetric tensor

A := ∑
n∈N

un◦···◦un︸ ︷︷ ︸
2m times

∈R[2m,N], (2.7)

every element of which is an absolutely and uniformly convergent infinite series

[A]i1 ...i2m
= ∑

n∈N
[un]i1 ··· [un]i2m

= ∑
n∈N

φn(xi1)···φn(xi2m
), ∀i1,. . .,i2m∈{1,.. . ,N}.

Let c :=(c1,. . .,cN)
T. The system (2.6) is indeed a multilinear system

Ac2m−1=b. (2.8)

For example, when we take the min kernel on [0,1], elements of the associated coefficient
tensorA are

[A]i1 ···i2m
= ∑

n∈N

2m

n2mπ2m
sin(nπxi1)···sin(nπxi2m

), ∀i1,. . .,i2m∈{1,.. . ,N}. (2.9)
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When the integral-type min kernel on [0,1] is used, elements of A are

[A]i1 ···i2m
= ∑

n∈N

2m

n4mπ4m
sin(nπxi1)···sin(nπxi2m

), ∀i1,. . .,i2m∈{1,.. . ,N}. (2.10)

3 A scalable optimization approach

Since the coefficient tensor A of the multilinear system (2.8) is an absolutely and uni-
formly convergent infinite series, the exact tensor is unavailable at the numerical view-
point. In this section, we propose to approximate the infinite series (2.7) by its partial
sum

ÃP=
P

∑
n=1

un◦···◦un︸ ︷︷ ︸
2m times

∈R[2m,N], (3.1)

where the finite integer P is controlled by a predetermined tolerance ǫ.

Theorem 3.1. Let ǫ>0 be a small number. Then the error of elements (2.9) corresponding to the
min kernel satisfies ∣∣∣

[
ÃP−A

]
i1···i2m

∣∣∣≤ǫ,

if

P≥



[ǫ(2m−1)]−

1
2m−1

(√
2

π

) 2m
2m−1




,

where ⌈α⌉ stands for the smallest integer that is not less than α.

Proof. For any (xi1 ,. . .,xi2m
), the difference between [A]i1 ...i2m

and its partial sum approxi-

mation [ÃP]i1···i2m
is

∣∣∣
[
ÃP−A

]
i1,...,i2m

∣∣∣=
∣∣∣∣∣

∞

∑
n=P+1

2m

n2mπ2m
sin(nπxi1)···sin(nπxi2m

)

∣∣∣∣∣

≤
(√

2

π

)2m
∞

∑
n=P+1

1

n2m
|sin(nπxi1)···sin(nπxi2m

)|

≤
(√

2

π

)2m
∞

∑
n=P+1

∫ n

n−1

1

n2m
dt≤

(√
2

π

)2m
∞

∑
n=P+1

∫ n

n−1

1

t2m
dt

=

(√
2

π

)2m∫ +∞

P

1

t2m
dt

=

(√
2

π

)2m
1

2m−1
P1−2m≤ǫ.

Hence, the theorem is valid.



Y. Chen et al. / CSIAM Trans. Appl. Math., x (2024), pp. 1-25 11

Using a similar discussion, we get the following theorem.

Theorem 3.2. Let ǫ> 0 be a small number. Then the error of elements (2.10) corresponding to
the integral-type min kernel satisfies

∣∣∣[ÃP−A]i1 ...i2m

∣∣∣≤ǫ,

if

P≥



[ǫ(4m−1)]

−1
4m−1

(
4
√

2

π

) 4m
4m−1




.

Theorems 3.1 and 3.2 mean that tensors (2.9) and (2.10) could be approximated by
their finite partial sums in arbitrary precision. Some truncated parameter P’s correspond-
ing to various tolerance ǫ’s with m= 2 are listed in Table 1. We note that Theorems 3.1
and 3.2 for min kernels can be extended to other kinds of Mercer kernels straightfor-
wardly.

Table 1: Truncated parameter P corresponds to tolerance ǫ.

ǫ (m=2) 10−6 10−8 10−10 10−12 10−14 10−16

P corresponds to (2.9) 24 112 516 2393 11104 51537

P corresponds to (2.10) 2 4 7 13 25 49

Next, we focus on the slightly inexact tensor ÃP, which is a canonical polyadic tensor
and hence enjoys some fast computation approaches [6, 7].

Lemma 3.1. The tensor ÃP is a canonical polyadic tensor which is symmetric and positive
semidefinite. Define U :=[u1,. . .,uP]∈RN×P. Then we have

ÃPc2m =‖UTc‖2m
2m, ÃPc2m−1=Udiag(UTc)2m−11,

where 1∈RP is an all-one vector and ‖v‖2m :=(∑P
n=1 |vn|2m)1/(2m) is a norm for v∈RP.

Proof. It is straightforward to say that ÃP is a symmetric canonical polyadic tensor. From

(3.1), the i-th element of ÃPc2m−1 is

[
ÃPc2m−1

]
i
=

N

∑
k2=1

···
N

∑
k2m=1

P

∑
n=1

[un]i[un]k2
···[un]k2m

ck2
. . .ck2m

=
P

∑
n=1

[un]i

(
N

∑
k2=1

[un]k2
ck2

)
···
(

N

∑
k2m

[un]k2m
ck2m

)

=
P

∑
n=1

[un]i
(
[UTc]n

)2m−1

=eT
i Udiag(UTc)2m−11,
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where ei∈RN is the ith column of an identity matrix. Thus, we say

ÃPc2m−1=Udiag(UTc)2m−11.

Moreover, it holds that

ÃPc2m = cT
(
ÃPc2m−1

)
=1Tdiag(UTc)2m1=‖UTc‖2m

2m.

Hence, tensor ÃP is positive semidefinite.

Lemma 3.1 reveals a fast computation method for calculating the product of the tensor

ÃP ∈R[2m,N] and any vector c∈RN . We compare two approaches. (I) When the dense

tensor ÃP ∈R[2m,N] is stored explicitly, we need a lot of memory and O(N2m) flops for
the tensor-vector product. (II) We prefer to store a matrix U∈RN×P. By Lemma 3.1, the

computational cost for ÃPc2m−1 is only about O(NP) flops. We will give a numerical
examination in Fig. 2.

By substituting the interpolation equation (2.8) into the optimization model (2.4), we
get the following approximate model:

min
c∈RN

f (c)=
∥∥ÃPc2m−1−b

∥∥2

2
+σÃPc2m, (3.2)

where ÃP∈R[2m,N] is defined in (3.1), c is the unknown vector, σ is a positive parameter,
and m is a positive integer. Model (3.2) is a nonlinear nonconvex optimization. Since
the objective function of (3.2) is smooth, we customize an efficient gradient-based iter-
ative algorithm. Now, a fast computational method for computing function values and
gradient vectors of the objective function of (3.2) is presented in the following theorem.

Theorem 3.3. Let U=[u1,. . .,uP]∈RN×P. Then we have

f (c)=‖Udiag(UTc)2m−11−b‖2
2+σ‖UTc‖2m

2m. (3.3)

The gradient of f (c) is

∇ f (c)=(4m−2)Udiag(UTc)2m−2UT[Udiag(UTc)2m−11−b]

+σ2mUdiag(UTc)2m−11.

Proof. According to Lemma 3.1, we immediately get (3.3). By computing the total deriva-
tive of f (c), we have

d f (c)=d
〈
Udiag(UTc)2m−11−b,Udiag(UTc)2m−11−b

〉

+σd
〈
UTc,diag(UTc)2m−11

〉

=2
〈
d[Udiag(UTc)2m−2UTc],Udiag(UTc)2m−11−b

〉

+σ2m
〈
d[UTc],diag(UTc)2m−11

〉
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=2
〈
(2m−1)Udiag(UTc)2m−2UTdc,Udiag(UTc)2m−11−b

〉

+σ2m
〈

UTdc,diag(UTc)2m−11
〉

=(4m−2)
〈
dc,Udiag(UTc)2m−2UT[Udiag(UTc)2m−11−b]

〉

+σ2m
〈

dc,Udiag(UTc)2m−11
〉

= 〈dc,∇ f (c)〉,

which verifies the gradient presented in the lemma.

We note that the computational cost for evaluating a function value f (c) and a gra-
dient vector ∇ f (c) is about O(NP) flops. This motivates us to develop a scalable opti-
mization algorithm.

Algorithm 1: A Scalable Optimization Algorithm.

1: Select c0∈RN , choose positive numbers κ3<κ4<1,γlbd<γubd, Lubd,ǫ and ε.
2: Evaluate f (c0) and ∇ f (c0) by Theorem 3.3, choose d0=−∇ f (c0), and set t←0.
3: while ‖∇ f (ct)‖∞ > ε do

4: Find a stepsize αt satisfying (3.5) and (3.6) by the Wolfe line search.
5: Update an iterate ct+1= ct+αtdt.
6: Evaluate f (ct+1) and ∇ f (ct+1) by the fast computation in Theorem 3.3.
7: Calculate and save st = ct+1−ct and yt=∇ f (ct+1)−∇ f (ct).
8: Initialize q←−∇ f (ct) and L←min(t,Lubd).
9: for i= t,t−1,.. . ,t+1−L do

10: Calculate and save βi←ρis
T
i q.

11: Update q←q−βiyi.
12: end for

13: Select γt∈ [γlbd,γubd] and set d←γtq.
14: for i= t+1−L,t−L,. . . ,t do

15: Calculate ζ←ρiy
T
i d.

16: Update d←d+(βi−ζ)si.
17: end for

18: Update a descent direction dt+1=d.
19: Set t← t+1.
20: end while

To solve the unconstrained minimization (3.2), we utilize the limited memory BFGS
(L-BFGS) technique [33, 34], which is an efficient quasi-Newton algorithm for large-scale
optimization. Given an initial iterate c0 ∈RN and the approximate inverse H0 ∈RN×N

of an initial Hessian that is symmetric and positive definite, we set t← 0 and compute
a descent direction

dt=−Ht∇ f (ct),
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which satisfies

dT
t ∇ f (ct)≤−κ1‖∇ f (ct)‖2

2, ‖dt‖2≤κ2‖∇ f (ct)‖2, (3.4)

where 0< κ1≤ 1≤ κ2. Whereafter, the Wolfe inexact line search is performed along the
descent direction dt to find a stepsize αt such that

f (ct+αtdt)≤ f (ct)+κ3αtd
T
t ∇ f (ct), (3.5)

dT
t ∇ f (ct+αtdt)≥κ4dT

t ∇ f (ct), (3.6)

where 0<κ3<κ4 <1. Then the new iterate is defined as

ct+1= ct+αtdt. (3.7)

Define st := ct+1−ct and yt :=∇ f (ct+1)−∇ f (ct). Owing to (3.6), (3.7) and (3.4), it holds
that

sT
t yt=αtd

T
t

(
∇ f (ct+αtdt)−∇ f (ct)

)
≥αt(κ4−1)dT

t ∇ f (ct)

≥αtκ1(1−κ4)‖∇ f (ct)‖2
2>0,

when ct is not a stationary point. Once Ht is symmetric positive definite, BFGS generates
a new symmetric positive definite matrix

Ht+1=VT
t HtVt+ρtsts

T
t , Vt := I−ρtyts

T
t , ρt :=

1

sT
t yt

.

Hence, the vector pair {st ,yt} captures Hessian information at iteration t.
To solve large scale optimization problems, L-BFGS only adopts L:=min(t,Lubd) latest

vector pairs {st,yt}. Starting from a simple matrix

H
(0)
t =γt I

with γt∈ [γlbd,γubd]⊂ (0,∞), L-BFGS updates H
(ℓ)
t recursively

H
(ℓ)
t =VT

t+ℓ−LH
(ℓ−1)
t Vt+ℓ−L+ρt+ℓ−Lst+ℓ−LsT

t+ℓ−L, ∀ℓ=1,.. . ,L.

The positive parameter γt could be chosen from Barzilai-Borwein stepsizes [8] and im-
proved variants [21]. In this way, there exist positive constants 0< κ1≤ 1≤ κ2 such that

the new descent direction dt+1=−H
(L)
t ∇ f (ct+1) satisfies (3.4). Then we use Ht+1=H

(L)
t

and set t← t+1.

In numerical computation, L-BFGS can be implemented by a fast two-loop recursion
which costs aboutO(LN) flops. Finally, a complete algorithm is presented in Algorithm 1
formally.
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4 Convergence analysis

If Algorithm 1 terminates finitely, i.e. there exists an iterate ct such that ∇ f (ct)= 0, we
immediately know that ct is a first-order stationary point. So, in the remainder of this
section, we assume that Algorithm 1 generates an infinite sequence of iterates {ct}.
Theorem 4.1. Assume that the gradient ∇ f is Lipschitz continuous, i.e. there exists a constant
L1>0 such that

‖∇ f (c)−∇ f (c̃)‖2≤ L1‖c− c̃‖2, ∀c, c̃∈RN . (4.1)

Then,
lim
t→∞
‖∇ f (ct)‖2 =0.

Proof. From the second Wolfe condition (3.6) and the Lipschitz continuity (4.1) of∇ f , we
have

(κ4−1)dT
t ∇ f (ct)≤dT

t

(
∇ f (ct+1)−∇ f (ct)

)
≤αtL1‖dt‖2

2,

which means

αt≥−
1−κ4

L1

dT
t ∇ f (ct)

‖dt‖2
2

. (4.2)

By substituting this inequality into the first Wolfe condition (3.5), we obtain

f (ct)− f (ct+1)≥κ3
(1−κ4)

L1

(
dT

t ∇ f (ct)
)2

‖dt‖2
2

≥ κ2
1κ3(1−κ4)

κ2
2 L1

‖∇ f (ct)‖2
2,

where the last inequality holds owing to (3.4). By summing this expression over all in-
dices t=0,1,.. . ,T with T being an iterative number, we obtain

f (c0)≥ f (c0)− f (cT+1)=
T

∑
t=0

f (ct)− f (ct+1)≥
κ2

1κ3(1−κ4)

κ2
2 L1

T

∑
t=0

‖∇ f (ct)‖2
2, ∀T.

Hence, by letting T→∞, it holds that

∞

∑
t=0

‖∇ f (ct)‖2
2≤

κ2
2 L1 f (c0)

κ2
1κ3(1−κ4)

<+∞,

That is to say ‖∇ f (ct)‖2→0 as t→∞. Every accumulation point of iterates {ct} generated
by Algorithm 1 is a stationary point.

Since the objective function f (c) defined in (3.2) is a polynomial, the following Łojasi-
ewicz property holds.

Theorem 4.2 (Łojasiewicz property [30]). Suppose that c∗ is a stationary point of f (c). Then
there exists a neighborhood U of c∗, an exponent θ∈ [0,1), and a positive constant κK such that

| f (c)− f (c∗)|θ≤κK‖∇ f (c)‖2

for all c∈U. Here, we define 00≡0.
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Using the Łojasiewicz property, we show that the sequence of iterates generated by
Algorithm 1 converges to a unique accumulation point.

Theorem 4.3. Suppose that the sequence of iterates {ct} ⊂R
N generated by Algorithm 1 is

bounded. Then there exists a single point c∗∈RN such that

lim
t→∞

ct = c∗.

Further, under the assumption of Theorem 4.1, we say that c∗ is a stationary point.

Proof. According to [1, Theorem 3.2], we only need to prove two strong descent condi-
tions

[ f (ct+1)= f (ct)] ⇒ [ct+1= ct],

f (ct)− f (ct+1)≥κ5‖∇ f (ct)‖2‖ct−ct+1‖2

for all t and for some κ5 > 0. The first condition holds since Algorithm 1 is a descent
algorithm.

From the Wolfe condition (3.5), the descent condition (3.4), and (3.7), we have

f (ct)− f (ct+1)≥−κ3αtd
T
t ∇ f (ct)

≥κ1κ3αt‖∇ f (ct)‖2
2

≥ κ1κ3

κ2
αt‖∇ f (ct)‖2‖dt‖2

=
κ1κ3

κ2
‖∇ f (ct)‖2‖ct−ct+1‖2.

Let κ5 :=κ1κ3/κ2. This theorem is proved.

To estimate the convergence rate of Algorithm 1, the following lemma is valuable.

Lemma 4.1. Assume that the gradient ∇ f is Lipschitz continuous, i.e. ∇ f satisfies (4.1). Then
there exists a positive constant κ6 such that

‖ct+1−ct‖2≥κ6‖∇ f (ct)‖2.

Proof. According to (4.2) and (3.4), we obtain

‖ct+1−ct‖2=αt‖dt‖2≥
1−κ4

L1

−dT
t ∇ f (ct)

‖dt‖2
≥ κ1(1−κ4)

κ2L1
‖∇ f (ct)‖2.

Let κ6 :=κ1(1−κ4)/(κ2L1), we get this lemma.

Using Lemma 4.1, the following theorem can be proved by a similar discussion in [3,
Theorem 2] and [20, Theorem 3.2].
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Theorem 4.4. Under assumptions of Theorems 4.1 and 4.3, we have the following estimations of
convergence rate.

• If θ∈ (0,1/2], there exist κ7>0 and ̺∈ (0,1) such that

‖ct−c∗‖2≤κ7̺t.

• If θ∈ (1/2,1), there exist κ8>0 and κ9>0 such that

‖ct−c∗‖2≤κ8t−
1−θ

2θ−1 , | f (ct)− f (c∗)|≤κ9t−
1

2θ−1 .

Because the objective function f :RN→R defined in (3.2) is a polynomial with degree
4m−2, an estimator [20] of the Łojasiewicz exponent is

θ=1− 1

(4m−2)(12m−9)N−1
,

which gets close to one. Hence, (1−θ)/(2θ−1)→ 0 and 1/(2θ−1)→ 1 as m→∞ or
N→∞. That is to say, the objective function value generated by Algorithm 1 at least
exhibits a sublinear convergence rate of O(1/t) without assuming strong convexity.

5 Numerical experiments

We are going to illustrate the effectiveness and the efficiency of the proposed scalable
optimization algorithm equipped with the L-BFGS quasi-Newton and the Wolfe inexact
line search techniques. On parameters of L-BFGS, we use at most Lubd = 5 latest {st,yt}
vector pairs to construct an approximate inverse of Hessian and choose the parameter
γt=sT

t yt/(yT
t yt) at each iteration. For the Wolfe inexact line search, parameters κ3 and κ4

are set to 0.1 and 0.5, respectively. The proposed algorithm terminates if ‖∇ f (ct)‖∞ <

10−5‖∇ f (c0)‖∞ or the number of iterations exceeds one thousand.

5.1 One-dimensional interpolation

For the purpose of choosing a proper truncated parameter P, we consider a univariate
function

f (x)= xsin(20πx), x∈ [0,1]. (5.1)

One hundred random points are sampled uniformly from [0,1] and associated function
values are evaluated to form the scattered data. Let m=2. The tensorA is a fourth order
100 dimensional symmetric tensor. Using the min kernel (2.9), we test truncated error ǫ
ranging from 10−6 to 10−12. The corresponding P’s by Theorem 3.1 are calculated. For
each ǫ, we test one thousand pieces of random scattered data and compute the average
absolute error

AAE:=
1

1000

1000

∑
k=1

max
x∈[0,1]

∣∣ f̂k(x)− f (x)
∣∣,
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where f̂k(x) is the interpolation function generated from the k-th piece of random scat-
tered data. Numerical results are reported in Table 2. It is easy to see that moderate
truncated error ǫ = 10−7 produces the best AAE. Small ǫ can not improve the quality
of the interpolation function but costs expensive computing resources. Thus, we fix the
truncated error ǫ=10−7 in the remainder experiments.

Next, we compare the novel tensor method, which uses the tensor kernel (2.9), with
the classical matrix method with a Mercer kernel. For a typical piece of random scatted
data, curves of interpolation functions generated by tensor and matrix kernels are illus-
trated in the Fig. 1. The thick green curve denotes the truth graph of the function (5.1)
and magenta circles stand for positions of scattered sites. The matrix method seems to
use blue line segments to connect adjacent points. When the original function oscillates
frequently, the interpolation error of matrix method is significant. The function generated
by the tensor method illustrated by a red dotted curve seems smooth and captures peaks
and valleys of the original function.

To evaluate the efficiency of the fast computation approach proposed in Lemma 3.1,
we compare two approaches for computing the product of the coefficient tensor and

a vector. One approach deals with a dense tensor ÃP. The other one exploits the canoni-
cal polyadic structure and works with U. When the number of data sites varies from fifty
to twenty thousand, the scalable optimization algorithm with these two approaches cost

Table 2: AAE corresponds to truncated error ǫ with the min kernel.

ǫ 10−6 10−7 10−8 10−9 10−10 10−11 10−12

P 24 52 112 240 516 1111 2393

AAE 0.0283 0.0151 0.0168 0.0170 0.0170 0.0170 0.0169

Figure 1: Curves of interpolation functions within one dimension.



Y. Chen et al. / CSIAM Trans. Appl. Math., x (2024), pp. 1-25 19

different CPU times, which are listed in Fig. 2. Obviously, the proposed fast computation
method is rather efficient.

Figure 2: Comparison of CPU times.

5.2 Two-dimensional interpolation

Now, we turn to two-dimensional scattered data interpolation. Six binary functions will
be tested, viz.

f1(x,y)=
1

3
exp

(
−81

4

((
x− 1

2

)2

+

(
y− 1

2

)2
))

,

f2(x,y)=
1.25+cos(5.4y)

6+6(3x−1)2
,

f3(x,y)=
1

9

(
tanh(9−9x−9y)+1

)
,

f4(x,y)=2exp

(
−30

((
x− 1

3

)2

+

(
y− 1

3

)2
))
−exp

(
−20

((
x− 2

3

)2

+

(
y− 2

3

)2
))

,

f5(x,y)=−exp

(
−1

5

√
x2+y2

2

)
+

1

20

[
e−exp

(
cos(2πx)+cos(2πy)

2

)]
+1,

f6(r,θ)=





exp

(
− 1

1−r2

)[
1− 4r4

4r4+(1−r2)4
sin

(
θ− 1

1−r2

)]
, if r<1,

0, if r≥1,

where f1, f2, f3 are from [22] and f5 is the Ackley function [5], and f6 is a smooth “Mexican
hat” function [1] with (r,θ) standing for polar coordinates in R

2.
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For each function, we randomly select N=500 data sites and evaluate associated func-
tion values to perform scattered data interpolation. For comparison, we test a MATLAB
built-in routine “scatteredInterpolant”, the matrix kernel model (1.3) in RKHS, and the
tensor kernel model (3.2) in RKBS. Surfaces of interpolation functions generated by these
three methods are illustrated in Fig. 3. The first column draws surfaces of original func-
tions. Interpolation function images generated by a MATLAB built-in routine, the matrix
kernel approach, and the tensor kernel approach are illustrated in the second to the last
columns, respectively. In Table 3, we report the maximal errors and average errors be-
tween original functions and corresponding interpolation functions produced by these

Original MATLAB RKHS: matrix RKBS: tensor

f1

f2

f3

f4

f5

f6

Figure 3: Surfaces of interpolation functions within two dimension.
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Table 3: Errors of interpolation surfaces.

Maximal errors

Methods f1 f2 f3 f4 f5 f6

MATLAB 0.0991 0.0927 0.1223 0.5459 0.1035 0.0548

RKHS: matrix 0.0090 0.0390 0.0659 0.0902 0.0939 0.0772

RKBS: tensor 0.0014 0.0334 0.0586 0.0161 0.0610 0.0538

Average errors

Methods f1 f2 f3 f4 f5 f6

MATLAB 0.0143 0.0240 0.0127 0.1014 0.0067 0.0047

RKHS: matrix 0.0005 0.0007 0.0024 0.0050 0.0064 0.0072

RKBS: tensor 0.0002 0.0017 0.0033 0.0029 0.0047 0.0070

three interpolation methods. It can be seen that function images generated by the MAT-
LAB built-in routine and the matrix kernel approach are not smooth enough compared
to the original image, and the images generated by the tensor method seem better. This
means that our proposed algorithm recovers original functions better.

5.3 Numerical partial differential equations

The last experiment concentrates on numerical partial differential equations. It is well-
known that some finite element methods for solving numerical partial differential equa-
tions have the superconvergence property [28], i.e. the numerical solution at some points
is higher precision than that of the overall domain. Then, a postprocessing, e.g. an inter-
polation, of these high-precision points can produce a better numerical solution.

In this subsection, we consider the following one-dimensional heat equation with
a nonlinear term





π2 ∂u

∂t
=

∂

∂x

(
∂u

∂x

)
+

1

2
u2, 0≤ x≤1, t≥0,

u(x,0)=sin(πx), u(0,t)=u(1,t)=0.
(5.2)

Since there exists a nonlinear term in the heat equation, the closed-form solution of (5.2)
is unavailable. Now, we use a MATLAB built-in routine “pdepe” to produce a numerical
solution illustrated in Fig. 4(a).

Using the MATLAB built-in routine “scatteredInterpolant”, the matrix kernel based
interpolation in RKHS and the tensor kernel based interpolation in RKBS, we obtain three
surfaces illustrated in Figs. 4(b)-4(d), respectively. To examine in details, we plot curves
at times t=0,0.5,1,1.5,2 in Fig. 5. Obviously, the MATLAB built-in routine “scatteredIn-
terpolant” and the matrix kernel based interpolation only connect data points with line
segments at t=0, while the tensor kernel based interpolation produces a smooth curve.
For t= 0.5, the matrix kernel based interpolation still uses line segments, the MATLAB
built-in routine “scatteredInterpolant” and the tensor kernel based interpolation produce
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curves. By enlarging the picture, we see that the curve produced by tensor kernel based
interpolation is smoother than that of the matrix kernel.

(a) (b)

(c) (d)

Figure 4: Interpolation surfaces of a numerical solution of (5.2).

Figure 5: Curves at various times.
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6 Conclusion

By exploiting the low rank structure of canonical polyadic tensors, we designed a fast
computation method for computing the product of the tensor and any vector in arbi-
trary precision. Then the fast approach for computing the objective function and the as-
sociated gradient vector were derived straightforwardly. Using nonlinear optimization
methods, we customized a scalable optimization algorithm equipped with the L-BFGS
quasi-Newton and the Wolfe inexact line search techniques for solving scattered data in-
terpolation problems. Numerical experiments illustrated the effectiveness and efficiency
of our algorithm. For further works, we may consider other kernel functions besides the
min kernel and effective algorithms to solve problem (3.2) directly.
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