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NUMERICAL SOLUTION OF
THE REACTION-DIFFUSION EQUATION™

. Guo BEr-YU (3&)@5@;‘)
(Shanghas Umvdrsﬁy of Science and Technology, Shanghat, Ghm)

In this paper, we consider the numerical solutioﬁ for the equation -'

au__ aU 2 au N
U &u( (2, 4, U)-5 ) F(z, t, U)=0.

A finite difference scheme and the basio error equa.]_ity are given. Then the error
estimations are proved for the periodie problem with v (z, ) >0, the first and second
boundary value problems with »(, {)>v,>>0, and for »(U)>ve>0. Under some
conditions such estimations imply the stabilities and convergences of the schemes.

F

§ 1. Introduction

In one-dimensional space, the reaction—diffusion equation is the following
ot ol o ol
M (3, t, U)o~ (v(e, ¢, U) ad ) F(z, 3, U) =0.

‘Much work has been done to solve this equation (see [1]). On the other hand some
authors worked at error estimations. But there are still some unsolved problems:

(i) In [2], the stability is taken as the boundedness of the solution. But in
fact the boundedness of the solution of a non-linear scheme is not uniform with
the stability. Besides it is supposed that

v(z, ¢, U)? | M (=, t, U)|, K=>0.

So the following important case is excluded. |
M(», t, U)=U, w»=positive constant.
(ii) In [3], the author considered the following case:
Mz, t, U)=U? p=1,
‘but only for the periodic problem with »(w, ¢, U)=rpositive constan.
(iii) Recently the author! studied the numerical solution of Burger’s
.equation and used the same technique for the reaction-diffusion equation, but only

for some special cases (see [5]).
This paper is concerned with a general problem, i.e,

U ou @ ou
iU -~ 5 (v(@, 4, U) )~ F(m, 1, U) =0, 0<a<1,#>0, (1.1)
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where »(z, t, U)=>0."+ - .+
The technigue nsed is to est:lmate the mdex of genarahzed ﬂt&bﬂlt-y (see [6—8]).
JIn section 2, we give some notations and lemmas. In section 3, a scheme is
constructed and the basic error equality. is proved In section 4, we give a siriot
error estimation for the permdin prohlem with »(z, £)>0. In sections 5 and 6, we
prove strict error estimations with the first or second boundary value ﬁﬂndltmns. In
section 7, we consider the case »(e, ¢, U) =p(U)>0. < e g e

'§ 2. Notations and Lemmas
Let  and 7 be the mesh spacing of variables and ¢ respedtﬁ:ely.' The mesh
point is (jh, k7).

ue(jh, b¥) = 3 [u(jh+h, be) —u(jh, k)],
A wa(jh, kv) =3 [ulgh, k%) —u(jh—h, kr)],
e gh, k) = [u(hth, ko) —u(ih—h, B)],
ey, h>==—rv<yh Fr, w(h, Be))ua(hy b)Y
e [v(}h v, wCih, b2))ie(ih, b5)1s,

u,(gh, "Ifs*r') = %——[u(jh, kz —I—*r) *—-u(j'h, fm‘)] o
We define | | |

N1

(u(?w) w(km‘)) h;u(gh k-::)fu(jh Tc'r),
lw(he) | ? = (u(kv), M(k'r)),
1UEe) [ = - 23 # (G, e, u(h, b)) W3 Ih, br) +ub(fh, Br)].

If y( 4k, kv, u(jh, fw))—l then I“(k")ll. o, 4y is denoted b}" |u(.h')l;l for
simplicity. .

Lemma 1.
o 2(u(kr), w(ke)) = [uke) P —v]u () |0 _
Lemma 2. | | ¢
(u(bz), H¥ ¥ Du(be) )+ | k) |2, v0muam =D,
ewhere

D;——-u;(Nh .E-r)[:u(Nh kv, u(Nh k*r))u(Nh —h, k%)
 +v(Nh—h, Iw u.(Nh b, zw))u(m rw)]
—-—u.(O, k-r) [» (&, kv, u(h, kr))u(O, Et)

+»(0, kv, u(0, k7))u(h, k'v)].,. g ke K
Pﬂ‘ﬁof From Abel’s formula we have . -
(e (k%) €(E7)) + (£2(R7), n(kz))



