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Abstract

The exterior boundary value problems of Laplace equation and linear elastic equations are
considered. A sories of approximate infinite boundary conditions are givem. Then the original
problem is reduced to a boundary value problem on a bounded domain. The finite element approxima-
tion of this problem and its error estimate are obtained. Finally, a numerical example shows that this
maothod is very effective.

P § 1. Introduction

Many boundary value problems of partial differential equations involving the
unbounded domain arise in practical applications, such as coupling of structurey
with foundation and environment and fluid flow around obstacles. In finding the
numerical solutions of this kind of problems, it is often a difficulty using the
clagsical finite element method or finite difference method. In engineering, the
usual method is to cut off the unbounded part of the domain and to set up an
artificial boundary condition at the mew boundary of the remaining bounded
domain. For example, the Dirichlet condition and Neumann condition are often
used for elliptic partial differential equations. In general, the artificial boundary
condition at the new boundary is only a rough approximation of the exact
boundary condition. Hence the remaining bounded domain must be quite large
when high accuracy is required. It is still difficult to compute the numerical
solution on a quite large domain.

Combining the finite element method and the classical analytical method, Han
and Ying™ proposed the local finite element method for solving the elliptic
boundary value problem on an unbounded domain. An exferior boundary value
problem of model equation du=0 has been considered. By cutting off the exterior
domain of a circle and getting the exact boundary condition at the new boundary
of the remaining bounded domain by the classical analytical method, the original
problem is reduced to an equivalent boundary value problem on a bounded
domain with integral boundary condition. This method is closely related to the
method of coupling of F. E. M. and canonical boundary reduction proposed by
Fong Kang™?, Their difference is in the form of the canonical integral equations.
But in both methods, the integrals have singular kernels, and thus they are not
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readily available for compution. In this paper, exterior boundary value problems
of Laplace equation and the linear elastic equations are considered. A series of
approximate infinite boundary conditions are given and applied to the finite
element method. The error estimate of the finite element approximate solution
ig obtained and a numerical example shows the effectivenecss of this method.

§ 2. An Exterior Boundary Value Problem of Laplace Equation

2.1. The continuous problem

Let I7; be a bounded, simple closed curve in R2?, and £ be the unbounded
domain with boundary I';. Consider the following problem:

— =0, Q,
ulr,=fi | (2.1)

% 18 bounded, when r — 4o,

This problem is defined on. an unbounded domain
. First the problem is reduced to a boundary
value problem on a bounded domain. In £, we
draw a circumference I', with radius R: then Q is
divided into two parts. The bounded part is
denoted by ; and £,=0Q\Q, is the wunbounded
part (see Fig. 1). Let u(r, 8) denote the solution
of problem (2.1), where a;=rcosf, v,=7rsiné.
If a cerfain boundary condition of u (s, ) on T,
is given, then we can consider problem (2.1) only
on the bounded domain £,. On domain Q,, u(r, §)

Fig 1 can be written, as
u(r, 9)——+2( ) (@q cos nf 4 b, sin nf), (2.2)
therefors
u(R,0) =X _n :
5 E = (@, cos nf+b, sin nd), (2.3)
On I, we have
u(R, 9)* g} (@, cos nf + b, sin nd) (2.2)
and
o “g?ﬂ - 2 ( —n?)(a, cos nf+b,, sin nd). (2.4)

From (2.4), we obtain the Fourier coofficients a,, b, (n=1, 2, ---):
1 (** Pu(B, ¢

= wn? Jo op* R
2.5)
1 [** FPu(RB, ; (
s an? Jo é‘iﬂ'ﬂ 2 smn@drp.

And we have



