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Abstract

We prove that Lin Qun and Lu Tac’s splitting extrapelation method and correction method ean

e offectively applied fo raise the accuracy of the numerical solution of elliptic boundary vaiune

problems on general regions, i.e., t0 obtain approximate sclutions with fourth- or fifth-order
 precision in the maximum norm.

§ 1. Introduction
The SO].‘[I‘IilOIl of the linear elliptic boundary value problem
7, 'u"(m) o I Y
{Lu(m) =3[ai(0) T4 b(a) 5 [Hdlaul@) =f(e), 2€0,

\
w(zw) —=g(a), mEBQ
by the finite difference method has a2 long history, see, e.g., [1] and rferences
therein. It is well-known that there are many methods, based on the asymptotic
expansion, for acceleration of convergence, but the one for problem (1) was obtained
by Bohmer' only recently.

In thig paper, we firgt give a gimpler proof of Bohmer’s result. Then we
explain how to obtain solutions with fourth- or fifth—order precision by the gplitting
extrapolation method™’. Finally, based on the idea in [8], we formulate the
correction analogue for (1) and prove that the approximate solution has fourth—order
precision. |

The gplitting extrapolation method™’ can save much computational work and
gtorage in comparison with the nsual extrapolation along all variabled, for it is
egsentially eqmal to the procedure in which the one-dimensional extrapolation ig
done N times, where N ig the dimension of problem {1). Moreover, it is appropriate
for parallel computers. The correction method hag the advantage that fo obtain a
more accurate solution, one does not need to solve the original discrete problem on a
smaller mesh, but 10 solve another discrete problem on the originsl mesh, which is

easier.

§ 2. Formulation of Difference Analogue

JLet us consider the numerical solution for (1) in which Q is an arbitrary
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bounded and connected region in the N-dimensional Euclidean space BY. To define
the analogue, we first introduce the following notations

ey, J—th unit vector in the j-th co—ordinate direction,
h>0, the StEp}___N={1,; 2, wu, N}, i
2=10; F1; 22 wopy _
N,=QN{zERY: o;=hn;, ;€ Z, Y€ N},
Gh={xC Ny ot he;EQ, VjENT,
¢ i Q;:Nﬁ—*ﬂh. ' 5 j
For every #& @}, by notations we know that there exist a non-empty subset
T=T+)I- of N such that x+he;ER, Vi€ I, o—he;€Q, VJE I and athe, €02, VIC
N—I. We assume that 8Q is smooth enough and h is so small that we have
o— (v—1) he;€Q, v=2, ---, k, VJEI* and & +(v—1) he, €0, vem 2 e B, VIEI.
Moreover, for any 7& I*, there is exactly one intersection point @ (1—sf)he;, 0
st< 1, of the line segment from z 0 =zt he; with 8Q2. Taking &€ (2, we let 882, be
the set congisting of the intersection points.
Now, we define an operator Ly F—F,, where Fr={u: N o0, —> R}. For
every € (2, let

- g e | _
. N
'. Ly () = —‘;’:—5 E a;{ ) [z;h(m +hes) — Quh{m) +u, (s —hes)]
+ th g bi(2) [un(@+hey) —up(@—heg)] +d(@)un(e)- (2.1)

For every o€ 8Qs, Lnyus(2z) =us(2). Finally, for overy o€ &, we still use (2.1) to
define L;u:(2). To this end, noting that 4+ he;€ Q, Vi€ I*, we replace uy(@:khe;) in
(2.1) by | - 8

k—1 :
wp(wthes) =of (ot (1—s7 he; ) + ; of un( @ T vhey ), (2.2)

where
k | .
ata=bt [TIA=3), afy=(=1"*5/(o+1-8}), (2.9)
. e .

which is meaningful from the assumptions. Thus, Ly is well defined and we obtain
the discretization problem corresponding to the continuous problem (1), i.e., the
difference analogue |

L () =f(z), €U,
2.
Jl up(w)=g(x), >EC. | -

T+ should be pointed out that the discrete problem (2.4) is essentially the same
ag that in [1].

§ 3. A Priori Estimate for the Discrete Problem

In this section we rewrite the resulis of Bramble—Hubbard™* in a more
convenient form for our use. | '
We express the operator L, as



