PERTURBATION ANALYSIS FOR SOLUTIONS OF ALGEBRAIC RICCATI EQUATIONS*

CHEN CHUN-HUI (陈春晖)
(Peking University, Beijing, China)

Abstract

This paper discusses the conditioning of algebraic Riccati equations, i.e. the influence of perturbations in data on the positive semi-definite solution. A perturbation bound for the solution is given.

Notation. The symble $\mathbb{C}^{m\times n}$ denotes the set of complex $m\times n$ matrices, and $\mathbb{C}^n = \mathbb{C}^{n\times 1}$. $\|\cdot\|_2$ denotes the spectral norm and the Euclidean vector norm. The superscript H is for conjugate transpose. $A \ge 0$ means that matrix A is positive semi-definite. $\lambda(A)$ denotes the spectrum of a matrix A. I_n denotes the n-th order identity matrix. Re λ denotes the real part of a complex number λ .

§ 1. Introduction

Algebraic Riccati equations arise in optimal control applications. The algebraic Riccati equation for continuous-time systems takes the form

$$A^{H}X + XA - XNX + K = 0,$$
 (1.1)

where A, N, $K \in \mathbb{C}^{n \times n}$, $N^H = N \ge 0$, $K^H = K \ge 0$. The positive semi-definite solution $X = X^H \ge 0$ of (1.1) is required.

Let $N = BB^H$ and $K = C^HC$ be full-rank factorizations of N and K, respectively. Under the assumption that (A, B) is stabilizable and (C, A) is detectable, (1.1) is known to have a unique positive semi-definite solution X, and A-NX is stable.

Definition 1.1. $M \in \mathbb{C}^{2n \times 2n}$ is said to be Hamiltonian if $J^{-1}MJ = -M^H$, where $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.

Now consider the Hamiltonian matrix

$$M = \begin{pmatrix} A & N \\ K & -A^H \end{pmatrix}. \tag{1.2}$$

Under the assumption above, the eigenvalues of M have nonzero real part. If $\begin{pmatrix} U_1 \\ U_2 \end{pmatrix}$ is a $2n \times n$ matrix such that $M \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} S$, where S is stable, U_1 is invertible and $X = -U_2U_1^{-1}$ is the positive semidefinite solution of (1.1).

^{*} Received January 12, 1987.

The conditioning of algebraic Riccati equations, i.e. the influence of perturbations in the data on the solution, was studied to some extent in [3], [4] and [7]. [5] pointed out that it is still an open problem.

By using the perturbation theorem of invariant subspaces of a matrix, [7] obtained some useful results. This paper will continue the discussion on this problem.

§ 2. The Separation of a Stable Matrix

In [6] the separation of two matrices is defined and denoted by sep(A, B). Now we introduce the following definition.

Definition 2.1. Let $A \in \mathbb{C}^{n \times n}$. The separation of A is the number sep(A) defined by

$$\sup_{P^H=P \atop |P|=1} ||PA+A^HP||, \qquad (2.1)$$

where | • | denotes any consistent norm on C^*.

In particular, when the norm in (2.1) is taken to be the spectral norm and Frobenious norm, it is denoted by $sep_2(A)$ and $sep_F(A)$, respectively.

By [6], it is easy to prove that sep(A) has the following properties:

Property 1. Let $A, X \in \mathbb{C}^{n \times n}$ with X nonsingular. Then

$$sep(X^{-1}AX) \geqslant \frac{sep(A)}{\varkappa(X)\varkappa(X^H)},$$

where $\varkappa(X) = ||X|| ||X^{-1}||$, If X is unitary, then

$$sep_{P}(X^{H}AX) = sep_{P}(A), P = 2, F$$
.

Property 2. Let A, $E \in \mathbb{C}^{n \times n}$. Then

$$\operatorname{sep}(A) - (\|E\| + \|E^H\|) \leq \operatorname{sep}(A + E) \leq \operatorname{sep}(A) + (\|E\| + \|E^H\|).$$

Property 3. Let $A \in \mathbb{C}^{n \times n}$ with $\lambda(A) = \{\lambda_i : i = 1, .2, \dots, n\}$. Then

$$\operatorname{sep}_{P}(A) \leq 2 \min_{1 \leq i \leq n} |\operatorname{Re} \lambda_{i}|, \ P = 2, F.$$

On that basis, we will give a further discussion on the property of the separation of a stable matrix. Let $A \in \mathbb{C}^{n \times n}$ be a stable matrix with $\lambda(A) = \{\lambda_i(A) : i=1, 2, \dots, n, \mid \text{Re } \lambda_1(A) \mid \ge \dots \ge \mid \text{Re } \lambda_n(A) \mid \}$. If P is Hermitian, write $\lambda(P) = \{\lambda_i(P) : i=1, 2, \dots, n, \mid \lambda_1(P) \mid \ge \dots \ge \mid \lambda_n(P) \mid \}$.

It is easy to prove the following lemma.

Lemma 2.1. Let $H \in \mathbb{C}^{n \times n}$ be Hermitian. Then

$$||H||_2 = \max_{\substack{x \in \mathbb{C}^n \\ |x|_1=1}} |x^H H x|.$$

In addition, if the signs of eigenvalues of H are the same, then

$$|\lambda_n(H)| = \min_{\substack{x \in C^n \\ |x|_1=1}} |x^H H x|.$$

By Lemma 2.1, we can estimate a lower bound of the separation of a stable matrix.

Theorem 2.1. Let $A \in \mathbb{C}^{n \times n}$ be stable.

(1) If A is normal, then