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Abatract

In this paper, we mainly discuss the elvolution of initial small disturbance in dis-
crete computation of the contour dynamics method. For one class of smooth contour,
we prove the stability of evolution of initial small disturbance based on the analysis
of the convergence of the contour dynamics method with Euler's explicit method in
time. Namely, at terminal time T, the evolving disturbance is going to zerc as initial
small digturbance goes to sero. The numerical experiment on the stability of contour

dynamics has been given in [5, 6.

§1. Introduction

It is well-known that vortices play a very powerful role in nature. A description of the
study on the vortical phenomena is given in detail by H. J. Lugt|l|. But it is not enough for
- humankind to underatand the vortices, and to make use of vortex flows. As the mystery of
vortical motion has not been pictured clearly, much work has been ddne by experiment to
simulate the vortical motion. In general, it needs both much time and high cost to complete
the experiment. Among the numerous simulations for vortex fAows 12|, N. J. Zabusky’s
work for simulating the evolution of piecewise constant vorticity areas in two dimensions for
inviscid incompressible flows is most fascinating not only in numerical methods but alse in
mathematics [3]. Here we discuss the stability of his method in some sense for a class of
physical models. |

This method, contour dynamics method, is applied to finite area vortex regions
(FAVR'S) of piecewise-constant-vorticity for the Euler equation in two-dimensional invis-
cid incompressible flows.

The incnmpfesuible, inviscid Navier-Stokes equation in two dimensions is

‘b.t:l: -+ 'nbyy = o, (2)
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and

u = ¢y1 v = —Yz, (3)
w= —ty + Yy | (4)

where w is vorticity. Let

K, (2) = '.illr _E = K(z '), (5]

z=(z,y), 2 =(&n) (6)
2= (z— €7+ (y-n)’ . (7
0= iwik (8)

The velocity can be denoted in terms of vorticity:
. " U(s) = K x wlz) = [ K(z - lz')dz" (9)
R

For incompressible inviscid flows, Kelvin’s theorem enssures that the vorticity is constant
along the path of the fluid particle. So we can mark the trace of the fluid particle for

simulating the vortex Hows:

R—t =K X w[z). | (10]

In [3], N.J. Zabusky proposed the contour dynamics method mn which the vorticity w(z)
is approximated by piecewise constant vorticity areas @(z} with polygonal boundaries. For
convenience, we only consider the single constant vorticity area. Chosen N-fluid-particles on °*
the contour are connected by a closed broken line; hence, an N -polygonal-boundary constant
vorticity area is constructed. So we can follow the motion of these N-particles to simulate

the motion of the contour. The semi-discrete equations of motion of the fluid particles are

the following:

A5,
F? = K x @ = K(%;) x @(z;}, (11)
j-: 1121"':N-
Denote
H = m?x|zj+1 ~ zjl, (12)
h = min lz;4+1 — 25, (13)
2
ZiyN = %5
"and
H/h < M, (14)

where M, is a positive constant.



