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Absatract

This paper deals with a sysiem of ordinary differential equations with known condi-
tions associated with a given matrix. By using analytical and computational methods,
the generalized inverses of the given matrix can be determined. Among these are the
weighted Moore-Penrosge inverse, the Moore-Penrose inverse, the Drazin inverse and
the group inverse. In particular, a new insight is provided into the finite algorithms for
computing the generalized inverse and the inverse.

. §1. Introduction

In |1, 2] the imbedding method for nonlinear matrix eigenvalue prublems and for com-
putational linear algebra are presented.
In many engineering problems we must find the generalized inverses of a given matrix.
Let A € C™*®, Throughout this paper, let M and N be positive definite matrices of
order m and n respectively. Then, there is a unique matrix X € C"*™ satisfying

AXA=A, XAX =X, (MAX)" =MAX, (NXA)'=NXA. (1.1)

This X is called the weighted Moore-Penrose inverse of A, and is denoted by X = Ay, y.
In particular, when M = I,,, N = I,,, the matrix X that satisfies (1.1) is called the Moore-
Penrose inverse of A, and is denoted by X = A%, ie., AT = AF | .

Let A € C™**", The smallest nonnegative integer & such that

rank{A*) = rank(A**1) (1.2)

is called the index of A, and is denossd by Ind(A).
Let A € C**". With Ind(A) = k and if X € C™*" is such that

AFTIX = A XAX =X, AX=XA (1.3)

then X is called the Dragin inverse of A, and is denoted by X = A4. In particular, when
Ind{A) = 1, the matrix X that satisfies [1 3) 1s called thE group inverse of A, and is denoted
by X = A#

An imbedding method for the Moore-Penrose inverse is given in [3]. In this paper,
the imbedding methods for the weighted Moore-Penrose inverse Moore-Penrose inverse, the
Drazin inverse and the group inverse are presented, and these methods have a uniform
formula.
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First, we show the generalized inverses can be characterized in terms of a limiting process.
These expressions involve the inverse of the matrix Bi(z), where B.(z) is a matrix of z.
Secondly, we show how this problem may be reduced to integrating a system of ordinary
differential equations subject to initial conditions. In particular, a new insight is provided

into a series of finite algorithms for computing the generalised inverses and the inverse i
[4-8, 9). -

§2. Generalized Inverses as a Limit

In this section, we will show how the generalized inverses A+, A}y, As and A* can be
characterized in terms of a limiting process respectively.

Theorem 2.1. Let A € C™*" rankA = r. Then

ALy = im (N 'A*MA - 2I)"'N'A*M (2.1)

2—0
where z tends to zero through negative values.
Proof. From the (M, N)-singular value decomposition theorem!”l, there exists an M-
unitary matrix U € C™*™ and an N~ l-unitary matrix V' € C™*" such that

A=U(g’ g)v* (2.2)
where
U'MU=FL., VN W=L. (2.3)
D = diag(dy,ds, --,d,), d;>0, +=1,2,---,r (2.4)
and _
ALy = NV ( Do_l g ) U*M. (2.5)
Let N |
N~y =V = ('I.J]:‘,Ug, TR (2.6)
MWy = = (u1,u2, ", 8m}, | (2.7)
then |
V=V, [*=0"1 (2.8)
and
Al i N"‘lﬁ(i:d;‘lu,-uf)M”“. (2.9)
Since
N 1TA*MA = N-lf“(i:d?u,-u;)ﬂm (2.10)

t=1



