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Absatract

In [2], general approximation results for the solutions in a neighborhood of a simple
limit point are given. In this paper we give projective approximation results for the
solutions in a neighborhood of a double limit point. Application of these results to a
nonlinear partial differential equation and numerical results are given.

£1. Introduction

Consider a nonlinear problem of the form
F(Au)=0 - - (1.1)

where F :.R % V — V is sufficiently smooth, and V is a Hilbert space. In 2], finite
dimensional approximation of branches of solutions of problem (1.1) in a neighborhood of
a simple limit point and a simple bifurcation point have been studied. In this paper, we
will discuss the projective approximation of branches of solutions of problem (1.1} in a
neighborhood of a double limit point { Ag,uo) of F, ie., a point (Ag,up) € R x V which
satisfies the following properties: | |

1) F(Aﬂ: uﬂ) =0 |

2) Dy F(Ag, up) is gsingular and dim Ker D, F(Ao, up) = codim Range D, F(Ag,uo) = 2;

3) DyF(Xo,u0) € Range D, F()Xo, uo). -

An outline of the paper is as follows. In Section 2, we give a local analysis of a double
limit point. In Section 3 we consider the projective approximation problem of (1.1) near the
double limit point. Using the method similar to that in [2], we obtain the error estimates
and convergence results of the solution sets. In Section 4, we apply our results to a simple
example, and give numerical results.

$2. Local Analysis of Double Limit Points

Consider the nonlinear problem
F(Mu)=u+TG(M\u)=0 | (2.1)

where T € L(V,V),and G € C"(r 2 3): Rx V — V;V is a Hilbert space.
We assume that (Mg, ) € B x V is a double limit point of F in the sense that
1) F® = F()o, up) = 0; (2.2)
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2) D F? = D F(Xo,u0) =1+ TD,G® € L{V,V),—1 is an eigenvalue of TD, G with
algebraic multiplicity 2; |
3) Dy F® = DyF(Xo,u0) ¢ Range (D.F°).

Moreover, we assume that

Range (D, F°) is closed; D, F° is self-adjoint. | - (2.3)

Remark. Under the assumptions that T is compact and F is symmetric in some sense,
Raugel [5] has discussed multiple limit point problems. Here discarding the above assump-
tions, we only assume that (2.3) holds. We notice that. condition (2.3) holds if D F° is
a Fredholm operator and self-adjoint. Particularly, (2.3) holds for T compact and D, F°
self-adjoint. '

From 2) of (2.2) and the properties of self-adjoint operators, it follows that

Ker (Do F°) = Ker ((D.F°)"),” n=2,8,---.
Hence we can find @1, 02 € V, (@i, ©;) = 6;,1,7 = 1,2, such that
Ker(Dy F°) = span{e1, 2}
By the closed range th::-nrem“l , we have
Rang‘e (D F°) = Ker(D F°)={veV :(v,p) =0, 1= 1,2}.

Set
V, = Ker (D, F°), Vz= Range (D,F°).

Then V = V; + V,, and D, F? is an isomorphism of Va.
From 3) of (2.2), without loss of generality, we assume
(DA F°, 1) = (TDAG’, 1) #0.

Now we define the projective operator Q : V — V; by

2
QU e E(ur ‘Fji)pi: veV.

i=1

Then equation (2.1) is equivalent to the system

QF(A u) =0,
(X, ) | (2.4)
(I — Q)F(A,u) =0.
Given u € V, there exists a unique decomposition of the form
2
u=uﬁ+zfi@i+u: & € R, 1=1,2, veVs.
' 1=1
Setting £ = (&1, £3), the first equation of (2.4) becomes
2 ' - |
F(MEv) = QF(\uo + ) &ipi +v) =0. (2.5)
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