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DIFFERENCE METHODS FOR THE NONLINEAR
PSEUDO-PARABOLIC SYSTEM*

Du Ming-sheng
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Abstract
In this paper, we deal with the finite difference method for the initial boundary
value problem of the nonlinear pseudo-parabolic system

(*1)“!&: + A(m,t, U, thy,... 8 301 )u,:u.t = F(z,%,4,%3,...,48,3908 ),
ok (0,8) = or(t), u (L, t) = ¢1a(t),k=0,1, -, M~1, u(z,0} = ¢(z)

in the rectangular domain D= [0 € X < L,0 <t £ T, where u(z,t) = (ui(z, ¢), ua(z,
t),; 1 €m (2, 1)), #(2), Wor(t), Yia(t), F(z,t,%,%;,,..., %32 ) are m-dimensional vector
functions, and A(z,f,%,%x,...,%,2:m-1)} i8 an m X m positive definite matrix. The
existence and uniqueness of sclution for the finite difference system are proved by
fixed-point theory. Stability , convergence and error estimates are derived.
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The hnear and nonlinear pseudo-parabolic equations and systems often appear in pratical
research. There are many works contributed to the finite difference study of different prob-
lems for the nonlinear pseudo-parabolic equations. In this paper, we consider the nonlinear
pseudo-parabolic system

(—I)Mut + A(:I:, t,u te,..., umzu-—l)u,:ut = F(I, t, U, Uyp,. .., HIEH) (1.1]
with the nonhomogeneous boundary conditions
u:h(ﬁ,t) = '&Dk(t]: Uk (L, f.) = 1{)1]:(1;),16 =0,1,--- , M—-1 (1.2)

and the initial condition
u(z,0) = ¢(z), (1.3)
in the rectangular domain D = [0 < 2 < L,0 £ t < T}, by the finite difference method, where

u(z, t) = (u1(z, 1), ua(=,t), -, um(z,t)) and é(z), Yor(t), Yix(t), F(z,t, 4, uz, ..., tyan) are
m-dimensional vector functions.
The equation for the long waves in nonlinear dispersion

Uy + f(u):: — Uzzt
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is a simple special case of the system (1.1). Some evolutional equations of Sobolev-Galpern
type also belong to the system (1.1).

We make the following assumptions for the system (1.1)-(1.3):

(1) The system (1.1)-(1.3} has a unique smooth solution.

(2) A(z,t,po,p1,--.,P2m—1) is an mX m symmetric positive definite matrix for {z,t}) € D
and po,P1,...,pam—1 € IR™. Or rather, there exists a constant ag > 0, such that for all
e R™,

(A€, £) > ao|]’.

(3) A{z,¢t,po,p1,...,p20—1) i8 @ continuous function with respect to (z,¢t}) € D and it
has the first order continuous partial derivatives with respect to po,py,...,papm—1 € R™

and with respect to t € [0, T].

(4) F(zx,t,p0,P1,...,P2a) I8 a continuous function with respect to (z,t) € D and it has
the first order continuous partial derivatives with respect to po,p1,...,p2ar € R™

(5) Yo (t) € C([0, T]),¥1alt) € O“’([ﬂ T]) and $(z) € C3M) ([0, L)) satisfy the fol-

lowing conditions:

'vbﬂ'k(o) = ¢:.-:“ (0)1 'ﬁblk [0) - ¢;;#(L), K= D, 1, £ 3 ‘,M — 1.

Let us divide the rectangular domain D into small grids by the parallel lines z = z;
7 =01,---,J)arfl ¢t = t" (n = 0,1,---,N), where z; = jht* = nr,Jh = LNr =T
(7 =0,1,---,J; n =0,1,---,N). Denote the vector valued discrete function on the grid
point {z;,t") by vi (7 =0,1,---,J; n =0,1,---,N). For simplicity, we adopt the same
notations and abbreviatons as used in [1-3].

Let us construct the finite difference system

Tt — AMAM (yntl _ )
M3 3 n+o = Ay 71/ _ pn+ta
(-1 Lt g Aprer(o) 2 T8 ),
j=MM+1,- - J—-M: n=01,---,N-1 (1.4)

where
A;H'“(u] iy A(Ij_jtn+u’gﬂur}+a!Slv;}+a, ______ ,SM_IU;}+E,§MU?+H1 ______ ,EZM_IU;-"-i-ﬂ),
Frt(e) = Plzy, 19, 6%072 §ly7e ween o §M-Lynta sM nte . ... B gy

JtM—k k., n+l kN
i 1 1:':':. U - & .
6k”?+u: E (ﬂﬁ,{“) +hi: + i(ci) ;k‘):k=0111"':M_1:

i=y—M

| JtM—k k .n+1 k

- 3 A% v 4 ﬁ';
FrOrES = Z (c ii} +h‘: +ﬁ[ ) ) k=0, 1, <, M~—1,

s=3—M
J+M-k T+ M~k

> (M + 52 =1, Y (e B3 4 gy =1 k=0,1,---,M -1,

t=3— M t=y— M

vt =l T+ (1-a)0<a <,
) iItM—k Ak pr+ J+M—k
Frorte = %" B, i Y Bi=Lk=MM+1, - ,2M. (1.5)
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