ON STABILITY AND CONVERGENCE OF THE FINITE DIFFERENCE METHODS FOR THE NONLINEAR PSEUDO-PARABOLIC SYSTEM*

Du Ming-sheng

(Institute of Applied Physics and Computational Mathematics, Beijing, China)

Abstract

In this paper, we deal with the finite difference method for the initial boundary value problem of the nonlinear pseudo-parabolic system

$$(-1)^{M} u_{t} + A(x, t, u, u_{x}, \dots, u_{x^{2M-1}}) u_{x^{2M}t} = F(x, t, u, u_{x}, \dots, u_{x^{2M}}),$$

$$u_{x^{k}}(0, t) = \psi_{0k}(t), \ u_{x^{k}}(L, t) = \psi_{1k}(t), k = 0, 1, \dots, M-1, \ u(x, 0) = \phi(x)$$

in the rectangular domain $D = [0 \le X \le L, 0 \le t \le T]$, where $u(x,t) = (u_1(x,t), u_2(x,t), \dots, u_m(x,t))$, $\phi(x)$, $\psi_{0k}(t)$, $\psi_{1k}(t)$, $F(x,t,u,u_x,\dots,u_{x^{2M}})$ are m-dimensional vector functions, and $A(x,t,u,u_x,\dots,u_{x^{2M-1}})$ is an $m \times m$ positive definite matrix. The existence and uniqueness of solution for the finite difference system are proved by fixed-point theory. Stability, convergence and error estimates are derived.

 $\S 1$

The linear and nonlinear pseudo-parabolic equations and systems often appear in pratical research. There are many works contributed to the finite difference study of different problems for the nonlinear pseudo-parabolic equations. In this paper, we consider the nonlinear pseudo-parabolic system

$$(-1)^{M}u_{t} + A(x, t, u, u_{x}, \dots, u_{x^{2M-1}})u_{x^{2M}t} = F(x, t, u, u_{x}, \dots, u_{x^{2M}})$$
(1.1)

with the nonhomogeneous boundary conditions

$$u_{x^k}(0,t) = \psi_{0k}(t), \quad u_{x^k}(L,t) = \psi_{1k}(t), k = 0, 1, \dots, M-1$$
 (1.2)

and the initial condition

$$u(x,0)=\phi(x), \qquad (1.3)$$

in the rectangular domain $D = [0 \le x \le L, 0 \le t \le T]$, by the finite difference method, where $u(x,t) = (u_1(x,t), u_2(x,t), \cdots, u_m(x,t))$ and $\phi(x), \psi_{0k}(t), \psi_{1k}(t), F(x,t,u,u_x,\ldots,u_{x^{2M}})$ are m-dimensional vector functions.

The equation for the long waves in nonlinear dispersion

$$u_t + f(u)_x = u_{xxt}$$

^{*} Received July 31, 1987.

is a simple special case of the system (1.1). Some evolutional equations of Sobolev-Galpern type also belong to the system (1.1).

We make the following assumptions for the system (1.1)-(1.3):

- (1) The system (1.1)-(1.3) has a unique smooth solution.
- (2) $A(x, t, p_0, p_1, \ldots, p_{2M-1})$ is an $m \times m$ symmetric positive definite matrix for $(x, t) \in D$ and $p_0, p_1, \ldots, p_{2M-1} \in \mathbb{R}^m$. Or rather, there exists a constant $a_0 > 0$, such that for all $\xi \in \mathbb{R}^m$,

$$(A\xi,\xi)\geq a_0|\xi|^2.$$

- (3) $A(x, t, p_0, p_1, \ldots, p_{2M-1})$ is a continuous function with respect to $(x, t) \in D$ and it has the first order continuous partial derivatives with respect to $p_0, p_1, \ldots, p_{2M-1} \in \mathbb{R}^m$ and with respect to $t \in [0, T]$.
- (4) $F(x, t, p_0, p_1, ..., p_{2M})$ is a continuous function with respect to $(x, t) \in D$ and it has the first order continuous partial derivatives with respect to $p_0, p_1, ..., p_{2M} \in \mathbb{R}^m$.
- (5) $\psi_{ok}(t) \in C^{(1)}([0,T]), \psi_{1k}(t) \in C^{(1)}([0,T])$ and $\phi(x) \in C^{(2M)}([0,L])$ satisfy the following conditions:

$$\psi_{0k}(0) = \phi_{xk}(0), \quad \psi_{1k}(0) = \phi_{xk}(L), \quad k = 0, 1, \dots, M-1.$$

Let us divide the rectangular domain D into small grids by the parallel lines $x = x_j$ $(j = 0, 1, \dots, J)$ and $t = t^n$ $(n = 0, 1, \dots, N)$, where $x_j = jh, t^n = n\tau, Jh = L, N\tau = T$ $(j = 0, 1, \dots, J; n = 0, 1, \dots, N)$. Denote the vector valued discrete function on the grid point (x_j, t^n) by v_j^n $(j = 0, 1, \dots, J; n = 0, 1, \dots, N)$. For simplicity, we adopt the same notations and abbreviatons as used in [1-3].

Let us construct the finite difference system

$$(-1)^{M} \frac{v_{j}^{n+1} - v_{j}^{n}}{\tau} + A_{j}^{n+\alpha}(v) \frac{\Delta_{+}^{M} \Delta_{-}^{M}(v_{j}^{n+1} - v_{j}^{n})}{\tau h^{2M}} = F_{j}^{n+\alpha}(v),$$

$$j = M, M+1, \dots, J-M; \ n = 0, 1, \dots, N-1$$
(1.4)

where

$$A_{j}^{n+\alpha}(v) = A(x_{j}, t^{n+\alpha}, \bar{\delta}^{0}v_{j}^{n+\alpha}, \bar{\delta}^{1}v_{j}^{n+\alpha}, \dots, \bar{\delta}^{M-1}v_{j}^{n+\alpha}, \bar{\delta}^{M}v_{j}^{n+\alpha}, \dots, \bar{\delta}^{2M-1}v_{j}^{n+\alpha}),$$

$$F_{j}^{n+\alpha}(v) = F(x_{j}, t^{n+\alpha}, \hat{\delta}^{0}v_{j}^{n+\alpha}, \hat{\delta}^{1}v_{j}^{n+\alpha}, \dots, \hat{\delta}^{M-1}v_{j}^{n+\alpha}, \bar{\delta}^{M}v_{j}^{n+\alpha}, \dots, \bar{\delta}^{2M}v_{j}^{n+\alpha}),$$

$$\bar{\delta}^{k}v_{j}^{n+\alpha} = \sum_{i=j-M}^{j+M-k} (\alpha\beta_{ki}^{(1)} \frac{\triangle_{k}^{k}v_{i}^{n+1}}{h^{k}} + \beta_{ki}^{(2)} \frac{\triangle_{k}^{k}v_{i}^{n}}{h^{k}}), k = 0, 1, \dots, M-1,$$

$$\hat{\delta}^{k}v_{j}^{n+\alpha} = \sum_{i=j-M}^{j+M-k} (\alpha\beta_{ki}^{(3)} \frac{\triangle_{k}^{k}v_{i}^{n+1}}{h^{k}} + \beta_{ki}^{(4)} \frac{\triangle_{k}^{k}v_{i}^{n}}{h^{k}}), k = 0, 1, \dots, M-1,$$

$$\sum_{i=j-M}^{j+M-k} (\alpha\beta_{ki}^{(1)} + \beta_{ki}^{(2)}) = 1, \sum_{i=j-M}^{j+M-k} (\alpha\beta_{ki}^{(3)} + \beta_{ki}^{(4)}) = 1, k = 0, 1, \dots, M-1,$$

$$v_{j}^{n+\alpha} = \alpha v_{i}^{n+1} + (1-\alpha)v_{i}^{n}, 0 \leq \alpha \leq 1,$$

$$\tilde{\delta}^{k}v_{j}^{n+\alpha} = \sum_{i=j-M}^{j+M-k} \tilde{\beta}_{ki} \frac{\triangle_{k}^{k}v_{i}^{n+1}}{h^{k}}, \sum_{i=j-M}^{j+M-k} \tilde{\beta}_{ki} = 1, k = M, M+1, \dots, 2M.$$
(1.5)