MULTIGRID MULTI-LEVEL DOMAIN DECOMPOSITION*

Zhang Sheng Huang Hong-ci (Computing Center, Academia Sinica, Beijing, China)

Abstract

The domain decomposition method in this paper is based on PCG(Preconditioned Conjugate Gradient method). If N is the number of subdomains, the number of subproblems solved parallelly in a PCG step is $\frac{4}{3}(1-\frac{1}{4^{\log N+1}})N$. The condition number of the preconditioned system does not exceed $O(1+\log N)^3$. It is completely independent of the mesh size. The number of iterations required, to decrease the energy norm of the error by a fixed factor, is proportional to $O(1+\log N)^{\frac{3}{2}}$.

§1. Triangulation and Subdomain Selection

Let $\Omega \subset \mathbb{R}^2$ be a bounded polygonal region, and let

$$\begin{cases} a(u,v) = (f,v), f \in H^{-1}(\Omega), v \in H_0^1(\Omega), \\ u \in H_0^1(\Omega) \end{cases}$$
 (1.1)

be the variational form of an elliptic operator defined on it. The bilinear form satisfies

$$\begin{cases} a(u,v) = a(v,u), \\ |a(u,v)| \le M'||u|| \cdot ||v||, \\ a(u,u) \ge M''||u||^2, \end{cases}$$
 (1.2)

where $||\cdot||$ is the Sobolev norm in $H^1(\Omega)$. From (1.2) the norm is equivalent to that introduced by $a(\cdot,\cdot)$ in $H^1_0(\Omega)$. In what follows, we will consider $H^1_0(\Omega)$ as a Hilbert spase with the inner product $a(\cdot,\cdot)$.

We will approximate (1.1) with the finite element method. Triangular partition and linear continuous elements will be used. The triangulation satisfies quasi-uniformity and inverse hypothesis.

1.1. Triangulation. \mathcal{T}^0 is a triangulation of Ω satisfying quasi-uniformity and inverse hypothesis. Divide any triangle T^0 of T^0 into four (Fig.1), and we get a partition T^1 with the first refinement. Continue the process with T^1 similarly. After the m-th refinement, we get the final triangulation T^m , which is the partition we really use for finite element approximation. The mesh size of T^m is h.

^{*} Received March 10, 1990.

Let $S^m = S^h_0 \subset H^1_0(\Omega)$ be the finite element space. $S^0 \subset S^1 \subset \cdots \subset S^m$ are finite element spaces corresponding to 0-level to *m*-level triangulations. $\hat{\Omega}^l$ represents the set of *l*-level finite element nodes. $\{\phi_i^l \in S^l, i \in \hat{\Omega}^l\}$ are the usual finite element basis functions.

$$A^{l} = \left(a(\phi_{i}^{l}, \phi_{j}^{l})\right)_{i,j \in \hat{\Omega}^{l}} \tag{1.3}$$

is the *l*-level stiffness matrix, $A^m = A, l = 0, 1, 2, \dots, m$. $\hat{\Omega} = \hat{\Omega}^m$.

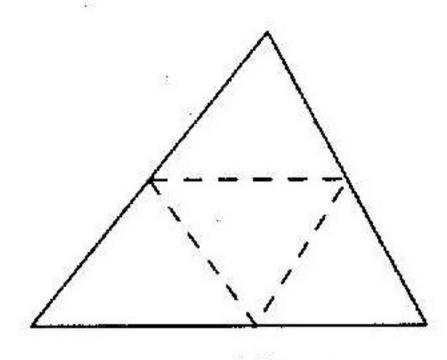


Fig. 1

1.2. Subdomain Selection. $\{\Omega_k^l, l=0,1,2,\cdots,m, k=1,2,\cdots,N_l\}$ is a set of open subregions of Ω . For a fixed $l \in \{0,1,2,\cdots,m\}, \{\Omega_k^l, k=1,2,\cdots,N_l\}$ is the set of l-level subdomains.

The following requirements should be met.

A1. $\{\partial \Omega_k^l, k = 1, 2, \dots, N_l\}$ is a part of the mesh line of the triangulation T^l , $l = 0, 1, 2, \dots, m$.

A2. For any fixed $l \in \{0, 1, 2, \dots, m\}$, i.e. on a given level,

$$\bigcup_{k=1}^{N_l} \Omega_k^l = \Omega, \tag{1.4}$$

 $\{\Omega_k^l, k=1,2,\cdots,N_l\}$ satisfies the quasi-uniformity requirements. H_l is the diameter of l-level subregions, $H_m=H$.

A3. For fixed l, there is another set of subregions $\{\Omega'_k^l, k=1,2,\cdots,N_l\}$ so that $\Omega'_k \subset \Omega'_k^l$ and

 $\operatorname{dist}\{\partial\Omega_{k}^{l}\setminus\partial\Omega,\partial\Omega_{k}^{\prime l}\setminus\partial\Omega\}\geq\alpha\cdot H,$

where α is a fixed constant. At any point in Ω , the number of subregions in $\{\Omega'_k, k = 1, 2, \dots, N_l\}$ which cover this point does not exceed a fixed number (if the coefficient of the function term in the differential operator is strictly positive, this requirement can be released.)

 $\hat{\Omega}_k^l = \Omega_k^l \cap \hat{\Omega}^l$ is the set of node points in Ω_k^l . From (1.4) we get

$$\bigcup_{k=1}^{N_l} \hat{\Omega}_k^l = \hat{\Omega}^l. \tag{1.5}$$

It is well known that the relation among the numbers of nodes, triangles and edges of a triangulation is roughly 1: 2: 3, and the numbers of triangles of one refined triangulation is four times that of the original one. Therefore,

$$|\hat{\Omega}^l|/|\hat{\Omega}^{l-1}| \simeq 4, \quad l=1,2,\cdots,m.$$

To ensure that the scales of subproblems are roughly equal to each other, we require **A4.** $N_l = 4^l$, $l = 0, 1, 2, \dots, m$.

 $N=N_m$ is the number of subregions. 0-level to (m-1)-level subregions are considered as auxiliary subdomains. The number of levels $m=\log_4 N$ is independent of the mesh size h.