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Abstract. Let 1 < p ≤ 2, E be a real p-uniformly smooth Banach space and T : E → E

be a continuous and strongly accretive operator. The purpose of this paper is to investigate
the problem of approximating solutions to the equation Tx = f by the Ishikawa iteration
procedure with errors�

xn+1 = anxn + bn(f − Tyn + yn) + cnun,
yn = a′

n
xn + b′

n
(f − Txn + xn) + c′

n
vn, n ≥ 0

where x0 ∈ E, {un}, {vn} are bounded sequences in E and {an}, {bn}, {cn}, {a
′
n
}, {b′

n
}, {c′

n
}

are real sequences in [0, 1]. Under the assumption of the condition 0 < α ≤ bn + cn,∀n ≥ 0,

it is shown that the iterative sequence {xn} converges strongly to the unique solution of the
equation Tx = f . Furthermore, under no assumption of the condition lim

n→∞
(b′

n
+ c′

n
) = 0, it

is also shown that {xn} converges strongly to the unique solution of Tx = f .
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1 Introduction and preliminaries

Let E be a real Banach space with norm ‖ · ‖, let E∗ denote the dual space of E, and let
〈·, ·〉 denote the generalized duality pairing between E and E∗. For 1 < p < ∞, the mapping
Jp : E → 2E∗

defined by

Jp(x) =
{

u∗ ∈ E∗ : 〈x, u∗〉 = ‖x‖‖u∗‖, ‖u∗‖ = ‖x‖p−1
}

, x ∈ E,
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is called the duality mapping with the gauge function φ(t) = tp−1. In particular, the duality
mapping with the gauge function φ(t) = t, denoted by J , is referred to be the normalized duality
mapping. It is a well-known fact[17] that Jp(x) = ‖x‖p−2J(x) for x ∈ E \ {0} and 1 < p < ∞.
Equivalently, the duality mapping Jp can be defined as the subdifferential of the functional
Ψ(x) = p−1‖x‖p , that is,

x∗ ∈ Jp(x) ⇔ x∗ ∈ ∂Ψ(x) =
{

f ∈ E∗ : p−1‖y‖p − p−1‖x‖p ≥ 〈y − x, f〉, ∀y ∈ E
}

. (1)

In addition, it is also known that Jp(λx) = λp−1Jp(x), ∀λ ≥ 0.
An operator T with the domain D(T ) and range R(T ) in E is said to be strongly accretive

if for x, y ∈ D(T ) there exists j(x− y) ∈ J(x− y) such that 〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2 for
some constant k > 0; or equivalently, for x, y ∈ D(T ) there is jp(x − y) ∈ Jp(x − y) such that

〈Tx − Ty, jp(x − y)〉 ≥ k‖x − y‖p (2)

for some constant k > 0. In particular, T is said to be accretive if for x, y ∈ D(T ) there is
j(x − y) ∈ J(x − y) such that 〈Tx − Ty, j(x − y)〉 ≥ 0; or equivalently, for x, y ∈ D(T ) there
exists jp(x − y) ∈ Jp(x − y) such that 〈Tx − Ty, jp(x − y)〉 ≥ 0. Without loss of generality, we
assume that k ∈ (0, 1). It is known that an operator T with the domain D(T ) and range R(T )
in E is accretive if and only if for all x, y ∈ D(T ) and r > 0 there holds the inequality

‖x − y‖ ≤ ‖x − y + r(Tx − Ty)‖.

It is also known that T is strongly accretive if and only if there exists a positive number k such
that (T −kI) is accretive where I is the identity operator of D(T ). The accretive operators were
introduced independently by Browder[1] and Kato[2] in 1967. An early fundamental result, due to
Browder, in the theory of accretive operators states that the initial value problem du/dt + Tu =
0, u(0) = u0 is solvable if T is a locally Lipschitzian and accretive operator on E. A strongly
accretive operator is sometimes called the strictly accretive operator. These operators have been
investigated previously by many authors; see [5-14, 18] for more details.

Now we remind the reader of the following fact: In most of the known results on the Ishikawa
iteration procedure (with errors) for finding solutions to nonlinear equations Tx = f of strongly
accretive operators, generally, the Lipschitz continuity or uniform continuity is imposed on the
strongly accretive operators T . Moreover, the sequences of the iteration parameters are assumed
or possible to be convergent to zero. See, for example, [5-14, 18].

Now, let us recall the following iteration procedures due to Xu[5].
(I) The Ishikawa iteration procedure with errors is defined as follows: For a nonempty closed

convex subset C of a Banach space E and an operator T : C ⊂ E → E, the sequence {xn} in C
is defined from an arbitrary x0 ∈ C by

{

xn+1 = anxn + bnTyn + cnun,
yn = a′

nxn + b′nTxn + c′nvn, n ≥ 0,

where {un}, {vn} are two bounded sequences in C and {an}, {bn}, {cn}, {a
′
n}, {b

′
n}, {c

′
n} are real

sequences in [0,1] satisfying certain restrictions.
(II) The Mann iteration procedure with errors is defined as follows: If a′

n = 1, b′n = c′n = 0 for
all n ≥ 0, then the above Ishikawa iteration procedure with errors is called the Mann iteration
procedure with errors.

Let 1 < p ≤ 2, E be a real p-uniformly smooth Banach space and T : E → E be a continuous
and strongly accretive operator. In this paper, we investigate the problem of approximating
solutions to the equation Tx = f by the Ishikawa iteration procedure with errors

{

xn+1 = anxn + bn(f − Tyn + yn) + cnun,
yn = a′

nxn + b′n(f − Txn + xn) + c′nvn, n ≥ 0


