Construction of Real Band Anti-Symmetric Matrices from Spectral Data

Qingxiang Yin
Department of Mathematics, Yancheng Teachers College, Yancheng 224002, China.

Received May 26, 2003; Accepted (in revised version) March 15, 2004

Abstract

In this paper, we describe how to construct a real anti-symmetric ($2 p-1$)-band matrix with prescribed eigenvalues in its p leading principal submatrices. This is done in two steps. First, an anti-symmetric matrix B is constructed with the specified spectral data but not necessary a band matrix. Then B is transformed by Householder transformations to a $(2 p-1)$-band matrix with the prescribed eigenvalues. An algorithm is presented. Numerical results are presented to demonstrate that the proposed method is effective.

Key words: anti-symmetric; eigenvalues; inverse problem.
AMS subject classifications: 65F10, 15A09

1 Introduction

This work deals with inverse eigenvalue problems for real banded anti-symmetric matrices. The solution of inverse eigenvalue problems is currently attracting a great interest due to their importance in many applications. In particular, real banded matrices play an important role in areas as applied mechanics [1,2], structure design [3], circuit theory and inverse Sturm-Liouville problem [4].

Let $p, n \in N, 0<p \leq n$ and $\left\{\lambda_{j}^{(k)}\right\}_{j=1}^{k}(k=n-p+1, \cdots, n)$ be a set of real numbers with

$$
\begin{align*}
\lambda_{j}^{(k)} & =-\lambda_{k-j+1}^{(k)}, j=1, \cdots, k ; k=n-p+1, \cdots, n . \tag{1}\\
\lambda_{j}^{(k)} \leq \lambda_{j}^{(k-1)} & \leq \lambda_{j+1}^{(k)}, j=1, \cdots, k-1 ; k=n-p+2, \cdots, n . \tag{2}
\end{align*}
$$

The problem is to determine a real anti-symmetric $n \times n$ matrix A with eigenvalues $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ $\left(i^{2}=-1\right)$ in the leading $k \times k$ principal submatrix of $A(k=n-p+1, \cdots, n)$ and $a_{s t}=0$ for $|s-t| \geq p$. In this paper a matrix A is called real anti-symmetric if $A \in R^{n \times n}, A^{T}=-A$. A similar problem with symmetric matrices has been studied in many papers, (see [5-10]). For anti-symmetric matrices, the case $p=2$ has been studied by He Chengcai [11], but the complex numbers were used there, so that the computation is rather complicated.

[^0]In Section 2 the eigen-properties of real anti-symmetric matrices were studied. In Section 3 an anti-symmetric matrix B is constructed where B has the specified spectral data, but it is not necessary a banded matrix. In Section $4 B$ is transformed to a $(2 p-1)$-band matrix with the prescribed spectra. In Section 5, an algorithm is presented with numerical examples which show that the method is effective.

2 Some properties of real anti-symmetric matrices

In order to prove our main results, let us first investigate the eigen- properties of real antisymmetric matrices. Some of them are well known so the proof is omitted.

Let A be a real anti-symmetric $n \times n$ matrix, i.e. $A \in R^{n \times n}, A^{T}=-A$. Then $-i A \in$ $C^{n \times n},(-i A)^{H}=i A^{T}=-i A$, hence $-i A$ is Hermitian and its eigenvalues are real. Let $\left\{\lambda_{j}^{(k)}\right\}_{j=1}^{k}$ be the eigenvalues of the $k \times k$ leading principal submatrix of $-i A(k=1, \cdots, n)$ satisfying

$$
\begin{equation*}
\lambda_{1}^{(k)} \leq \lambda_{2}^{(k)} \leq \cdots \leq \lambda_{k}^{(k)} \tag{3}
\end{equation*}
$$

According to Cauchy interlacing theorem, we have

$$
\begin{equation*}
\lambda_{j}^{(k)} \leq \lambda_{j}^{(k-1)} \leq \lambda_{j+1}^{(k)}, j=1, \cdots, k-1 ; k=2, \cdots, n . \tag{4}
\end{equation*}
$$

Noting that $A=i(-i A)$, we assert that $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ be the eigenvalues of $k \times k$ leading submatrix of A and (4) hold. Furthermore, because $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ are roots of a polynomial with real coefficients, so

$$
\begin{equation*}
\lambda_{j}^{(k)}=-\lambda_{k-j+1}^{(k)}, j=1, \cdots, k ; k=1, \cdots, n . \tag{5}
\end{equation*}
$$

Lemma 2.1. The eigenvalues of real anti-symmetric $n \times n$ matrix A are either zeroes or conjugate imaginaries. Let $\left\{\lambda_{j}^{(k)} i\right\}_{j=1}^{k}$ be the eigenvalues of the $k \times k$ leading submatrices of A satisfying (3), then (4) and (5) hold.

Lemma 2.2. [12, 2.5.14] $A \in R^{n \times n}$ is anti-symmetric if and only if there exist an orthogonal matrix $U \in R^{n \times n}$ such that

$$
T=U^{T} A U=\left[\begin{array}{ccccccccc}
0 & & & & & & & & \tag{6}\\
& \ddots & & & & & & & \\
& & 0 & 0 & \beta_{1} & & & & \\
& & & -\beta_{1} & 0 & 0 & \beta_{2} & & \\
\\
& & & & & -\beta_{2} & 0 & & \\
& & & & & & & \ddots & \\
& & & & & & & & -\beta_{r}
\end{array}\right)
$$

and $\pm \beta_{1} i, \cdots, \pm \beta_{r} i$ are all non-real eigenvalues of A. In this paper, T is referred to as the normal canonical form of A if $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{r}$ in (6).

Remark 2.1. The orthogonal matrix U can be chosen as follow: the first $n-2 r$ columns are the orthonormal eigenvectors corresponding to zero eigenvalues of A, the remaining columns are the orthonormal imagine part and real part of the eigenvectors corresponding to eigenvalues $\beta_{1} i, \cdots, \beta_{r} i$ respectively. The orthonormalization is needed when there are multiple eigenvalues.

[^0]: *Correspondence to: Qingxiang Yin, Department of Mathematics, Yancheng Teachers College, Yancheng 224002, China. Email: qx_yin@sohu.com

