## BOUNDARY-VALUE PROBLEMS FOR INTEGRO-DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE<sup>®</sup>

### Ma Tian and Yu Qingyu

(Dept. of Math., Lanzhou University)
(Received January 12,1988; revised May 3,1988)

Abstract In this paper we study the existence of solutions to the Dirichlet problem for a class of integro-differential equations of elliptic type by using the weakly continuous method.

Key Words Integro-differential equations; weakly continuous operator; Choquard equation; weak solutions.

Classifications 45K05;35J60.

#### 0. Introduction

The integro-diffferential equations of elliptic type occur in many practical models in nuclear physics, theory of quantum field and mechanics.

Ugowski [1] and Tsai Longyi [2] considered the following problem

$$a_{ij}(x)D_{ij}u + b_i(x)D_iu = f(x,u,K(u)), x \in \Omega$$
 (0.1)

$$u|_{\partial\Omega} = \varphi(x) \tag{0.2}$$

where K(u) denotes an integral operator, and  $\Omega \subset \mathbb{R}^m$  is a bounded region.

Ugowski discussed the existence of (0.1), (0.2) by using a successive approximation. Tsai Longyi discussed the existence of (0.1), (0.2) by combining methods of supersolution-subsolution and topological degree. Politiukov [3] defined a concept concerning  $\varepsilon$ -supersolution and  $\varepsilon$ -subsolution, and discussed parabolic equations by using this method.

What we shall discuss is the following problem

$$\sum_{|a|,|\beta|=n} (-1)^{*} D_{a}(a_{a,\beta}(x, \Lambda u, R(u)) D_{\beta} u) + \sum_{|\gamma| \leq n} (-1)^{|\gamma|} D_{\gamma} b_{\gamma}(x, \Lambda u, R(u)) = 0, \quad x \in \Omega$$
 (0.3)

$$D_{y}u|_{\partial\Omega}=0, \quad \forall \ |y|\leqslant n-1 \tag{0.4}$$

where  $\Delta u = (D_y u, |\gamma| \leq n-1)$ , R(u) is an integral operator acting on  $\Delta u$ , and  $\Omega \subset \mathbb{R}^m$  is an arbitrary region.

## 1. The Existence Theorem of the Weakly Continuous Operator Equations

Let X be a linear space,  $X_1$ ,  $X_2$  be the completions of X with respect to the norm

<sup>1</sup> The project supported by National Natural Science Foundation of China.

 $\|\cdot\|_1$  and  $\|\cdot\|_2$  respectively, X with respect to  $\|\cdot\|_2$  be a separable linear normed space.  $X_1$  be a reflexive Banach space.  $x_* \rightharpoonup x_0$  denotes weak convergence and  $x_* \rightharpoonup x_0$  denotes strong convergence.

**Definition** 1. 1 A mapping  $G: X_1 \rightarrow X_2^*$  is called weakly continuous if for any  $x_*, x_0 \in X_1, x_* \rightarrow x_0$ , there is

$$\lim_{n\to\infty}\langle Gx_n,y\rangle=\langle Gx_0,y\rangle,\quad\forall\ y\in X_2$$

Theorem 1. 2 Let  $G: X_1 \rightarrow X_2^*$  be a weakly continuous mapping. If there exists a bounded open set  $\Omega$  of  $X_1, O \in \Omega$ , such that

$$\langle Gu, u \rangle \geqslant 0, \quad \forall \ u \in \partial \Omega \cap X$$
 (1.1)

then Gu = 0 has a solution  $u_0$  in  $X_1$ , and  $u_0 \in \overline{\cos}$ .

**Proof** Take  $\{e_i\} \subset X$ , such that it is dense in  $X_2$ , and denote  $\widetilde{X}_n = \operatorname{span}\{e_1, \dots, e_n\}$ ,  $\widetilde{X}_n$  has the same norm as that of  $X_1$ . Define the mapping  $A_n: \widetilde{X}_n \to \widetilde{X}_n^*$  as

$$\langle A_{n}u,v\rangle = \langle Gu,v\rangle, \quad \forall \ u,v \in \widetilde{X}_{n}$$

It is easy to derive the continuity of  $A_n$  from the weak continuity of G. By (1.1) we have

$$\langle A_{\mathbf{n}}u,u\rangle = \langle Gu,u\rangle \geqslant 0, \quad \forall \ u \in \partial \Omega \cap \widetilde{X}_{\mathbf{n}}$$

Using the acute angle principle [4] of the topological degree, there exists  $u_* \in \overline{\Omega} \cap \widetilde{X}_*$  such that  $\langle A_* u_*, v \rangle = \langle G u_*, v \rangle = 0$ ,  $\forall v \in \widetilde{X}_*$ .

Since  $\{u_*\}$  is bounded in  $X_1$  and  $X_1$  is reflexive, let, say,  $u_* \rightarrow u_0 \in X_1$ , hence it follows that

$$\lim_{k\to\infty}\langle Gu_k,v\rangle=\langle Gu_0,v\rangle=0,\quad\forall\ v\in\widetilde{X}_s$$

Because  $\bigcup \widetilde{X}_*$  is dense in  $X_2$ , we have

$$\langle Gu_0,v\rangle=0, \quad \forall \ v\in X_2$$

i. e.,  $Gu_0 = 0$ . Therefore the theorem is proved.

# 2. The Elliptic Dirichlet Problem

We consider the following problem

$$\sum_{|a|,|\beta|=x} (-1)^{n} D_{a}(a_{a,\beta}(x, \Lambda u, R(u)) D_{\beta} u) + \sum_{|\gamma| \leqslant n} (-1)^{|\gamma|} D_{\gamma} b_{\gamma}(x, \Lambda u, R(u)) = f(x), \quad x \in \Omega$$
(2.1)

$$|D_{y}u|_{\partial Q} = 0, \quad |y| \leqslant n - 1$$

where  $\Delta u = \{D_a u \mid |a| \leq n-1\}$ , R(u) is an integral operator acting on  $\Delta u$  and  $\Omega \subset R^m$  is any region.

First of all, some comments must be made for the related notations of the anisotropic Sobolev space. We denote

$$W^{\mathbf{r}_a}_{|\alpha|\leqslant k}(\Omega)=\{u\in L^{\mathbf{r}_0}(\Omega), p_0\geqslant 1\,|\, D_au\in L^{\mathbf{r}_a}(\Omega), |\alpha|\leqslant k, p_a\geqslant 1 \text{ or } p_a=0\}$$
 with the norm

$$\|u\| = \sum_{|a| \leqslant k} \operatorname{sign} p_a \|D_a u\|_{L^{p_a}}$$