J. Partial Differential Equalions
Vol. 5, Na. 2 {1992), 69-80"

MIXED INITIAL BOUNDARY - VALUE PRDBLEM FOR SOME
MULTIDIMENSIONAL NONLINEAR SCHRODINGER
EQUATIONS INCLUDING DAMPING *

Guo Boling & Tan Shaobin

(Institute of Applied Physics and Computational
Mathematics, Beijing, 100088)
(Received July 19, 1989; revised Jan. 29, 1991)

Abstract The motivation of this paper is the study of the unique existence of
weak and smooth solutions for the mixed initial boundary-value problem of some mul-
tidimensional nonlinear Schrodinger equations including damping.
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1. Introduction

The problem of nonlinear Schrodinger equations including growth damping have
been studied in the paper [1-3], and the Chaos phenomenon has been found in these
problems [4, 5].

The purpose of this article is to investigate the existence and uniqueness of solutions
for the following mixed initial boundary-value problem
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where i = (uy(x, 1), wo(z, 8], - -, wnlx,2)) is an unknown complex vector-value function,
(1 is 2 bounded domain with boundary 8% € €2, i denotes the outward unit normal of
8. On the complex functions C(x,1) = (Ce(z, )vxn, flz, 1) = (filz,0), - Sz, )],
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and the real functions eg(x)(i,7 = 1,---,n), hlz),b(x), g(s), we make the following as-
sumptions
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We shall employ the Galerkin method to prove the existence of weak and smooth
solutions of the problem (1.1)-(1.3).
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Then one can see that {wy(z)} is a complete system of functions in H2(Q). We look

for an approximate solutions o, (z, ) in the form
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where @, = (tm, (2,1}, 2mpn(z,t)). The unknown complex functions &p,(1) =
(etpm1lt)s- - @kmn(t)) are determined by the following system of ordinary differential

equations
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