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Abstract DBoundary value problems for composite systems of partial differential
equations are investigated in this paper. The uniqueness and existence of classical
solutions and generalized solutions are studied.
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1. Introduction

The partial differential equations of composite type was studied for the first time
by J. Hadamard (1] in 1933, the equation concerned was
.
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.t was deduced from problems in fluid dynamics. In recent years, there are more and
more research papers on composite type equations and systems, for example, T. D.
Dzuraev’s work [2] on third and fourth order equations, among the equations considered
was the following one
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In China, Hua Lookeng, Lin Wei and Wu Cigian began their work from 1960°s on

second order systems of partial differential equations 3]
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where A, B and C are 2 x 2 real constant matrices. They have studied two kinds of
systems of composite type, the first kind is the one whose biquadratic characteristic

equation
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has a pair of complex roots and a double real root, it was reduced into the following
canonical form [3, p145]
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by linear transformations.
The general solutions of system (1.4) are the representations [3, p145]

u(z,y) = fi(y) + uo(z,y)
v(z,y) = -z fi(y)/2 + faly) + 2bva(=,¥)

where fi(y) and fa(y) are arbitrary real functions, ug(z,y) + fvg(z,y) is an arbitrary
analytic function. An interesting fact we noticed is that the solutions u are v of form
(1.5) satisfy Equations (1.1) and (1.2) respectively.

In this paper, we will study boundary value problems for composite system (1.4).

(1.5)

9. Boundary Value Problem on a Rectangular Domain

Let the rectangular domain be B = {(z,y): 0 <2 < h, 0 <y < 1}, the boundary
value problem to be considered in this section is to find functions u € C*(R) N C*(R)
and v € {v e CY(R): |v. € C'(R)} such that
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| uly=0 = Uly=1 =0, 0L2z<h
where @i.(y), ¥x(y) € C3[0,1), k= 0,1, and satisfy
eu(0) = wi(1) = 4(0) = i(1) = ¥3(0) = ¥(1) = 0, k=0,1

For nonnegative integer i, denote

A(3,A) = Mrih(1 + exp(—mih)} + 2(1 - A)(1 — exp(—ih))
I(X) = {i: A(i,A) = 0}
N(i,A) = —(Amih(exp(xih) - 1) — 45)(ui(h) - wi(0))

+ Amihu (0) + 2(wi(k) — vi(0)).




