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Summary. In this work, we delve into the relationship between deep and shallow neu-
ral networks (NNs), focusing on the critical points of their loss landscapes. We discover
an embedding principle in depth that loss landscape of an NN “contains” all critical
points of the loss landscapes for shallower NNs. The key tool for our discovery is the
critical lifting that maps any critical point of a network to critical manifolds of any
deeper network while preserving the outputs. To investigate the practical implications
of this principle, we conduct a series of numerical experiments. The results confirm
that deep networks do encounter these lifted critical points during training, leading to
similar training dynamics across varying network depths. We provide theoretical and
empirical evidence that through the lifting operation, the lifted critical points exhibit
increased degeneracy. This principle also provides insights into the optimization ben-
efits of batch normalization and larger datasets, and enables practical applications like
network layer pruning. Overall, our discovery of the embedding principle in depth
uncovers the depth-wise hierarchical structure of deep learning loss landscape, which
serves as a solid foundation for the further study about the role of depth for DNNs.
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1 Introduction

Deep neural networks (DNNs) have achieved remarkable success in various fields, such
as computer vision [18], natural language processing [4], and numerous scientific com-
puting applications [2,10,24]. Despite their widespread adoption and empirical achieve-
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ments, our theoretical understanding of DNNs, particularly regarding their loss land-
scape and training dynamics, remains limited. The loss landscape of a DNN essentially
characterizes the optimization problem encountered during the network’s training pro-
cess. The study of this landscape is of paramount importance as it directly influences not
only the efficiency and final outcome of the training process, but also the generalization
in overparametered case. Regrettably, the high-dimensionality and non-convex nature of
DNNs render their loss landscapes notoriously challenging to comprehend and navigate.
The recent discovery of the embedding principle [9,20,30,32] offers insights for analyzing
the loss landscape of networks and establishes connections between the loss landscapes
of neural networks with varying widths. However, considering the extreme importance
of depth for DNNs, it prompts us to question whether a relationship exists between the
loss landscapes of networks with different depths. In this paper, we strive to address this
fundamental question by conducting a thorough analysis of critical points across varying
network depths.

Our theoretical investigation is motivated by the following experimental observa-
tions, which hint at the existence of an embedding relationship in depth. As illustrated
in Fig. 1, the training of NNs with varying hidden layers, learning the Iris and MNIST
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Figure 1: The training dynamics of networks of different depths exhibit similarity. (a, c) The training loss for
NNs of varying depths on the Iris and MNIST datasets, respectively. (b, d) The corresponding training accuracy
for NNs of varying depths on the Iris and MNIST datasets, respectively. The color-coded areas indicate periods
of slow change in training loss or training accuracy, indicating a possible encounter with a saddle point.


