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Abstract. In this paper, we consider signal recovery in both noiseless and noisy cases
via weighted ℓp (0< p≤ 1) minimization when some partial support information on
the signals is available. The uniform sufficient condition based on restricted isometry
property (RIP) of order tk for any given constant t>d (d≥1 is determined by the prior
support information) guarantees the recovery of all k-sparse signals with partial sup-
port information. The new uniform RIP conditions extend the state-of-the-art results
for weighted ℓp-minimization in the literature to a complete regime, which fill the gap
for any given constant t> 2d on the RIP parameter, and include the existing optimal
conditions for the ℓp-minimization and the weighted ℓ1-minimization as special cases.
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1 Introduction

In compressed sensing, a central goal is to efficiently recover sparse signals x∈R
n from

a relatively small number of linear measurements, i.e.

y=Ax+e, (1.1)

where y∈R
m, A∈R

m×n(m≪n) is a sensing matrix and e∈R
m denotes a vector of measure-

ment errors. It has been a research focus in applied mathematics, statistics, and machine
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learning, with abundant applications ranging from medical imaging to speech recogni-
tion and video coding. A series of fast algorithms have been developed to recover the sig-
nal x from a relatively small number of linear measurements (1.1). The ℓp-minimization
with 0 < p ≤ 1 is among the most well-known algorithms for the reconstruction of the
signal x

min
x∈Rn

‖x‖
p
p

s.t. Ax−y∈B,
(1.2)

where B is a set determined by the noise structure and ‖x‖p = (∑n
i=1 |xi|

p)1/p. For the
noiseless case, B={0}.

In this paper, we consider the weighted ℓp-minimization (0< p ≤ 1) [7–9, 11–15, 17,
18, 20] to recover the signal x from (1.1), when some prior information is included in the
estimates of the support of x or some estimates of largest coefficients of x. For instance,
video and audio signals exhibit strong correlation over temporal frames, which can be
used to estimate a portion of the support based on previously decoded frames. The main
idea inherited in the weighted ℓp-minimization is to make the entries of x, which are
expected to be large, be penalized less in the weighted objective function by introducing
a weight vector w∈ [0,1]n . The weighted ℓp-minimization is formulated as follows:

min
x∈Rn

‖x‖
p
p,w

s.t. Ax−y∈B,
(1.3)

where

‖x‖p,w=

( n

∑
i=1

wi|xi|
p

) 1
p

.

In particular, the weighted ℓp-minimization (1.3) reduces to the well-known weighted
ℓ1-minimization used for the signal recovery when p=1, i.e.

min
x∈Rn

‖x‖1,w

s.t. Ax−y∈B.
(1.4)

Let T̃ ⊆ [n] = {1,2,.. . ,n} be a known support estimate of x. The weight vector w in this
paper is taken by

wi=

{
ω, i∈ T̃,

1, i∈ T̃c
(1.5)

for some fixed ω∈ [0,1].
The signal recovery based on partially known support is introduced in [2, 15, 20].

In [2, 14, 16, 19, 20], the known support information is incorporated using weighted ℓ1-
minimization with zero weights on the known support T̃, i.e. ω = 0 in (1.5). Friedlan-
der et al. [9] extended the weighted ℓ1-minimization to nonzero weights, i.e. ω ∈ [0,1]


