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Abstract. The monotonicity of discrete Laplacian implies discrete maximum princi-
ple, which in general does not hold for high order schemes. The Q2 spectral element
method has been proven monotone on a uniform rectangular mesh. In this paper we
prove the monotonicity of the Q2 spectral element method on quasi-uniform rectangu-
lar meshes under certain mesh constraints. In particular, we propose a relaxed Lorenz’s
condition for proving monotonicity.
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1 Introduction

In many applications, monotone discrete Laplacian operators are desired and useful for
ensuring stability such as discrete maximum principle or positivity-preserving of phys-
ically positive quantities [6, 10, 18, 21]. Let ∆h denote the matrix representation of a dis-
crete Laplacian operator, then it is called monotone if (−∆h)

−1 ≥0, i.e., the inverse matrix
(−∆h)

−1 has nonnegative entries. In this paper, all inequalities for matrices are entry-
wise inequalities.

In the literature, the most important tool for proving monotonicity is via nonsingular
M-matrices, which are inverse-positive matrices. See the Appendix for a convenient char-
acterization of the M-matrices. The simplest second order accurate centered finite differ-
ence u′′(xi)≈ u(xi−1)−2u(xi)+u(xi+1)

∆x2 is monotone because the corresponding matrix (−∆h)
−1

is an M-matrix thus inverse positive. Even though the linear finite element method forms
an M-matrix on unstructured triangular meshes under a mild mesh constraint [24], in
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general the discrete maximum principle is not true for high order finite element methods
on unstructured meshes [9]. On the other hand, there exist a few high order accurate
inverse positive schemes on structured meshes.

For solving a Poisson equation, provably monotone high order accurate schemes on
structured meshes include the classical 9-point scheme [3, 7, 11] in which the stiffness
matrix is an M-matrix. The classical 9-point scheme has the same stiffness matrix as
fourth order accurate compact finite difference schemes [13], see the appendix in [16].
In [2,4], a fourth order accurate finite difference scheme was constructed and its stiffness
matrix is a product of two M-matrices thus monotone. The Lagrangian P2 finite element
method on a regular triangular mesh [23] has a monotone stiffness matrix [19]. On an
equilateral triangular mesh, the discrete maximum principle of P2 element can also be
proven [9]. Monotonicity was also proven for the Q2 spectral element method on an
uniform rectangular mesh for a variable coefficient Poisson equation under suitable mesh
constraints [14]. The Qk spectral element method is the continuous finite element method
with Lagrangian Qk basis implemented by (k+1)-point Gauss-Lobatto quadrature. The
monotonicity of Q3 spectral element method for Laplacian on uniform meshes was also
proven in [8].

For proving inverse positivity, the main viable tool in the literature is to use M-
matrices which are inverse positive. A convenient sufficient condition for verifying the
M-matrix structure is to require that off-diagonal entries must be non-positive. Except
the fourth order compact finite difference, all high order accurate schemes induce pos-
itive off-diagonal entries, destroying M-matrix structure, which is a major challenge of
proving monotonicity. In [2] and [1], and also the appendix in [14], M-matrix factoriza-
tions of the form (−∆h)

−1=M1M2 were shown for special high order schemes but these
M-matrix factorizations seem ad hoc and do not apply to other schemes or other equa-
tions. In [19], Lorenz proposed some matrix entry-wise inequality for ensuring a matrix
to be a product of two M-matrices and applied it to P2 finite element method on uniform
regular triangular meshes.

In [14], Lorenz’s condition was applied to Q2 spectral element method on uniform
rectangular meshes. Such a monotonicity result implies that the Q2 spectral element
method is bound-preserving or positivity-preserving for convection diffusion equations
including the Allen-Cahn equation [21], the Keller-Segel equation [10], the Fokker-Planck
equation [17], as well as the internal energy equation in compressible Navier-Stokes sys-
tem [18]. On the other hand, all these results about Q2 spectral element method are on
uniform meshes. For both theoretical and practical interests, a natural question to ask is
whether such a monotonicity result still holds on non-uniform meshes. The monotonic-
ity of high order schemes on quasi-uniform meshes are preferred in many applications,
e.g., [22].

The focus of this paper is to discuss Lorenz’s condition for Q2 spectral element method
on quasi-uniform meshes. We discuss and derive sufficient mesh constraints to preserve
monotonicity of Q2 spectral element method on a quasi-uniform rectangular mesh. In
general, the same discussion also applies to Lagrangian P2 finite element method on a


