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Abstract. Numerical methods for the nonlinear Dirac equation (NDE) in the massless

nonrelativistic regime are considered. In this regime, the equation contains a small di-

mensionless parameter 0 < ǫ ≤ 1, and its solution is highly oscillatory in time. We

present and analyze traditional numerical schemes for the NDE, including finite differ-

ence methods, time-splitting methods and exponential integrators. Error analysis indi-

cates that all these methods require an ǫ-dependent time-step size to achieve an optimal

convergence order. Utilizing an operator splitting technique, we propose a uniformly ac-

curate (UA) scheme. The scheme enables first-order convergence in time for all ǫ ∈ (0,1]

without restrictions on time-step size. Error estimates for the UA scheme are rigorously

established and numerical results confirm the properties of the method.
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1. Introduction

The equation derived by Paul Dirac [21, 22] for describing spin-1/2 massive particles

was named after him. It plays an important role in particle physics and relativistic quan-

tum mechanics since then. It predicts the existence of positrons, and it is consistent with

both the principle of quantum mechanics and the theory of special relativity. Later on,

in 1938, Ivanenko [30] introduced a nonlinear Dirac equation by taking into account the

self-interaction of particles. It has received considerable attention in mathematical and
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physical studies [25,31], especially on solitary wave solutions [2,28,39,46]. Recently, the

Dirac equation and the NDE attract renewed interests since they can be adopted to study

graphene and Bose-Einstein condensates [1,23,26].

In this work, we consider the following one-dimensional NDE [5,7,10,21,22] on a torus

T= R/(2π) with periodic boundary conditions:

iħh∂tu(t, x) = −icħhα∂xu(t, x) +mc2βu(t, x)

+ eVu(t, x) + F
�
u(t, x)
�
, t > 0, x ∈ T,

u(0, x) = u0(x), x ∈ T,

where

u := u(t, x) =
�
u1(t, x),u2(t, x)

�T
: [0,+∞)×T→ C2

is the complex-valued vector wave function of the spinor field, V := V (x) the real-valued

electrical potential, ħh the Planck constant, c the speed of light, m the mass, and e the unit

charge. We take the nonlinearity as F(u) = λ(u∗βu)βu with λ ∈ R denoting the strength

of the nonlinear interaction [43] and u∗ = u
T
, while u denotes the complex conjugate of u,

and α,β are the Pauli matrices

α =

�
0 1

1 0

�
, β =

�
1 0

0 −1

�
.

Using the nondimensionalization

x̃ =
x

xs

, t̃ =
t

ts

, Ṽ =
V

As

, ũ=
u

us

,

where xs, ts = ms x2
s
/ħh, As = ms x2

s
/et2

s
, us = x−1/2

s
and ms are respectively dimensionless

length, time, potential, spinor field, and mass units — cf. [4, 5], and removing tilde e
everywhere, we arrive at a dimensionless form of the nonlinear Dirac equation — viz.

i∂tu(t, x) = −i
1

ǫ
α∂x u(t, x) +δβu(t, x)

+ Vu(t, x) + F
�
u(t, x)
�
, t > 0, x ∈ T,

u(0, x) = u0(x), x ∈ T

(1.1)

with δ = m0/ǫ
2. Note that 0< ǫ, m0 ≤ 1 the dimensionless parameters defined by

ǫ :=
xs

tsc
=

vs

c
, m0 :=

m

ms

,

where vs = xs/ts is the dimensionless velocity unit, ǫ the ratio between the wave velocity

and the speed of light — i.e. it is inversely proportional to the speed of light, and m0 the

ratio between the mass of the particle m and the dimensionless mass unit ms.

Under different scaling, the Eq. (1.1) corresponds to different parameter regimes, in-

cluding the standard (classical) regime (ǫ = m0 = 1), the nonrelativistic regime (m0 =


