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Abstract. A computational code is developed for the numerical solution of one-
dimensional transient gas-liquid flows using drift-flux models, in isothermal and also
with phase change situations. For these two-phase models, classical upwind schemes
such as Roe- and Godunov-type schemes are generally difficult to derive and expen-
sive to use, since there are no treatable analytic expressions for the Jacobian matrix,
eigenvalues and eigenvectors of the system of equations. On the other hand, the high-
order compact finite difference scheme becomes an attractive alternative on these oc-
casions, as it does not make use of any wave propagation information from the system
of equations. The present paper extends the localized artificial diffusivity method for
high-order compact finite difference schemes to solve two-phase flows with discon-
tinuities. The numerical method has simple formulation, straightforward implemen-
tation, low computational cost and, most importantly, high-accuracy. The numeri-
cal methodology proposed is validated by solving several numerical examples given
in the literature. The simulations are sixth-order accurate and it is shown that the
proposed numerical method provides accurate approximations of shock waves and
contact discontinuities. This is an essential property for simulations of realistic mass
transport problems relevant to operations in the petroleum industry.
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1 Introduction

The investigation of gas-liquid flows has become increasingly important in engineer-
ing design and applications in petroleum, chemical, geothermal and nuclear industries.
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Mathematical modeling under steady-state and transient conditions is of great impor-
tance for flow prediction in terms of pressure, temperature, phase velocities and phase
holdups. It is possible to predict steady-state flow along hilly terrains, as well as in tran-
sient flows for shut-off or re-start the line. The design of a new line or the shut-off or
re-start lines requires the numerical solution of the mass, momentum and energy conser-
vation equations.

Due to the complexity of gas-liquid flows, different two-phase models have been pro-
posed in the literature to model the phenomena inherent to such flows [1, 39, 46]. A cat-
egory of models that has been widely used to simulate gas-liquid flows is the drift-flux
two-phase models. Several works in the literature use the drift-flux two-phase models
with the hypothesis of isothermal flow, so the model has three equations, being a mass
equation for each phase and a momentum equation for the gas-liquid mixture [32,38,56].
The latter results from the sum of the momentum equations for each phase, implying the
elimination of complex modeling interfacial terms. However, this introduces the need for
a closure law regarding the slip between the phases [57]. An advantage of the drift-flux
model is that the system of equation is intrinsically stable.

The complexity of the closure laws severely restricts the possibilities of constructing
numerical schemes that explicitly incorporate the physics of wave propagation into their
formulations [17, 19, 44]. This is due to the difficulties in obtaining an analytical expres-
sion of the Jacobian matrix through purely algebraic manipulations. Nevertheless, some
numerical schemes have been proposed for the isothermal drift-flux model. Romate [44]
presented an approximate Riemann solver of Roe using a fully numerical approach. Evje
and Fjelde [18] proposed an AUSM scheme that is not based on algebraic manipulation of
the Jacobian, but makes explicit use of the approximate eigenvalues associated with the
non-linear waves. Flåtten and Munkejord [22] derived a Roe-type Riemann solver with
a linearized form of the Jacobian matrix obtained analytically. However, the eigenvalues
were evaluated numerically. Santim and Rosa [45] also proposed a Roe-type Riemann
solver, presenting an approximate analytical form for both the Jacobian matrix and the
eigenvalues of the system. It is worth mentioning that all the numerical schemes men-
tioned above are at best second-order accurate.

To model the interfacial mass transfer between the phases it is necessary to add the en-
ergy conservation equation to the two-phase models. These models differ mainly in the
level of disequilibrium between the two phases that they are able to take into account.
The most complete model has seven equations [3], with an equation for the balances of
mass, momentum and energy for each phase, in addition to an advection equation for
the volume fraction. This model allows for the disequilibrium of pressure, temperature,
velocity and Gibbs free energy between phases. Adding some equilibrium hypothesis
reduces the number of equations needed in the two-phase models. The simplest model
is the homogeneous equilibrium model (HEM) [9], which assumes that the phases have
the same velocity and are in fully thermodynamic equilibrium. This model has three
equations referring to the gas-liquid mixture, being the mass, momentum and energy
conservation equations. One level of hierarchy above the HEM model is the homoge-


