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HIGH-ORDER ENRICHED FINITE ELEMENT METHODS FOR

ELLIPTIC INTERFACE PROBLEMS WITH DISCONTINUOUS

SOLUTIONS
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Abstract. Elliptic interface problems whose solutions are C0 continuous have been well studied

over the past two decades. The well-known numerical methods include the strongly stable gen-
eralized finite element method (SGFEM) and immersed FEM (IFEM). In this paper, we study
numerically a larger class of elliptic interface problems where their solutions are discontinuous.
A direct application of these existing methods fails immediately as the approximate solution is

in a larger space that covers discontinuous functions. We propose a class of high-order enriched
unfitted FEMs to solve these problems with implicit or Robin-type interface jump conditions.
We design new enrichment functions that capture the imposed discontinuity of the solution while

keeping the condition number from fast growth. A linear enriched method in 1D was recently
developed using one enrichment function and we generalized it to an arbitrary degree using two
simple discontinuous one-sided enrichment functions. The natural tensor product extension to
the 2D case is demonstrated. Optimal order convergence in the L2 and broken H1-norms are

established. We also establish superconvergence at all discretization nodes (including exact nodal
values in special cases). Numerical examples are provided to confirm the theory. Finally, to prove
the efficiency of the method for practical problems, the enriched linear, quadratic, and cubic el-
ements are applied to a multi-layer wall model for drug-eluting stents in which zero-flux jump

conditions and implicit concentration interface conditions are both present.
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1. Introduction

Consider the interface two-point boundary value problem

(1)

{
−(β(x)u′(x))′ + w(x)u(x) = f(x), x ∈ (a, α) ∪ (α, b),

u(a) = u(b) = 0,

where w(x) ≥ 0, and 0 < β ∈ C[a, α] ∪ C[α, b] is discontinuous across the interface
α with the jump conditions on u and its flux q := −βu′:

[u]α = λF (q+, q−), λ ∈ R, F : [c1, d1]
2 → R,(2)

[βu′]α = fα, fα ∈ R,(3)

where the jump quantity

[s]α := s(α+)− s(α−), s± := s(α±) := lim
ϵ→0+

s(α± ϵ).

The primary variable u may stand for the pressure, temperature, or concentration
in a medium with certain physical properties and the derived quantity q := −βu′ is
the corresponding Darcy velocity, heat flux, or concentration flux, which is equally
important. The piecewise continuous β reflects a nonuniform material or medium
property (we do not require β to be piecewise constant). The function w(x) reflects
the surroundings of the medium characterising the coefficient of the reaction term.
The case of λ = 0 is widely studied, while the case of λ > 0 gives rise to a more
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difficult situation. For example, the case of rightward concentration flow [29, 30, 31]
imposes

(4)

{
[u]α = λ(βu′)(α−)

[βu′]α = 0,

which generates an implicit condition since the left-sided derivative is unknown.
Implicit interface conditions abound in higher dimensional applications [1, 16, 19,
21]. For definiteness, we will study a class of efficient enriched methods for problem
(1) under the jump conditions (4),

The model problem (1), allowing the solution to be discontinuous at the inter-
faces, is a more general form of interface problem than the ones studied by Babuška
et. al. using SGFEM [4, 3, 20] and by Li et.al. using immersed finite element
method (IFEM) [22, 23, 25, 24]. In these works, the interface problem is assumed
to have a continuous solution at the interfaces. For the case of the discontinuous
solution at the interfaces, some IFE methods have also been developed, see for
example [35, 36]. A large class of the methods is developed based on the unfitted
meshes, which has been demonstrated to be more efficient than methods using fitted
meshes, especially when the interface is moving [17]; see also [7, 10, 14, 15, 18, 29].

The generalized FEMs (GFEM) were first introduced to capture certain known
features of the solution to the crack problem [5, 6, 13, 26]. However, it has been
shown that GFEM suffers from a lack of robustness with respect to mesh config-
urations and bad conditioning. In general, the condition numbers of GFEM can
grow with an order O(h−4) where h characterizes the mesh size. This is two orders
of magnitude worse than the standard FEM (known to be of order O(h−2)). To
resolve this issue, SGFEM has been developed [3, 4, 20] with an extra feature of ro-
bustness with respect to the mesh configurations. Further development of SGFEM
has been active. For example, [34] extends the linear SGFEM to quadratic-order;
[12] extends the method for eigenvalue interface problems, and [33] generalizes the
SGFEM idea to isogeometric analysis with B-spline basis functions.

In 1D, when the solution to the underlying interface problem is continuous, a
single enrichment function associated with the interface can be used for arbitrary
high-order elements in the SGFEM. However, for an interface problem whose so-
lution is discontinuous at interfaces, the natural extension with one enrichment
function at each interface fails. A more sophisticated construction of enrichment
functions is desired especially for high-order elements. This motivates the present
work.

In our enriched FEM (might also call it as a GFEM), the approximation finite
element space V enr

h takes the form:

(5) V enr
h := Sh + VE = {ph + qhψ : ph, qh ∈ Sh, ψ ∈ Fenr}

where Sh is a standard finite element space (e.g., Pk-conforming, k ≥ 1),

(6) VE = {qhψ : qh ∈ Sh, ψ ∈ Fenr},
and the function ψ is from the enrichment function space

(7) Fenr := span{ψ0, ψ1, . . . , ψm}, dim(Fenr) = m+ 1.

Here the basis functions ψi capture the interface condition(s) at α, e.g., zero or
nonzero jump of the function value across α. For example, for a continuous so-
lution case, a single (m = 0) enrichment function suffices, whereas we show in
this paper that for discontinuous solution case, we need two enrichment functions
(m = 1) defined in (10). There are some distinct features about V enr

h in this case.


