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Abstract. In this paper, we give the first rigorous error estimation of the Weak Ad-
versarial Neural Networks (WAN) in solving the second order parabolic PDEs. By
decomposing the error into approximation error and statistical error, we first show the
weak solution can be approximated by the ReLU2 with arbitrary accuracy, then prove
that the statistical error can also be efficiently bounded by the Rademacher complexity
of the network functions, which can be further bounded by some integral related with
the covering numbers and pseudo-dimension of ReLU2 space. Finally, by combining
the two bounds, we prove that the error of the WAN method can be well controlled if
the depth and width of the neural network as well as the sample numbers have been
properly selected. Our result also reveals some kind of freedom in choosing sample
numbers on ∂Ω and in the time axis.
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1 Introduction

Partial differential equations (PDEs) have been widely and successfully applied to mod-
eling in physics, chemistry and economics. Meanwhile, solving PDEs numerically has
also drawn a large attention for practical simulation with PDEs. During the past decades,
various numerical methods (e.g. the finite element method [1–5], discontinuous Galerkin
method [6, 7], finite volume method [8, 9] and finite difference method [10, 11]) have
been studied and used in solving low-dimensional problems. However, in the situation
of high-dimensional PDEs, an issue known as the curse of dimensionality (CoD) would
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make the traditional methods impractical, in the sense that the number of freedom to
achieve a given precision in solving PDEs may increase exponentially with the dimen-
sion.

On the other hand, with recent development of machine learning in high-dimensional
data analysis, several works based on artificial neural networks have been proposed to
solve high-dimensional partial differential equations, including the Deep Ritz Method
(DRM) [12], the Physics-Informed Neural Networks (PINNs) [13] and the Weak Adver-
sarial Neural Networks (WAN) [14]. Both DRM and WAN use the variational forms of
the PDEs, while the PINNs is based on the square residual of the differential equations,
see [13, 15–17]. Further generalizations of PINNs have been explored in [18–21].

In addition to the successful practical application and good performance, several
works on error estimation for DRM structure [22–25] and PINNs structure [26–30] have
also been conducted, while a rigorous numerical analysis for WAN is still needed. Due
to the weak formulation, the WAN structure has more benefits since it doesn’t need a
strong solution of the problem, which can allow us to choose the test function φ to make
the process more accurate. In this paper, we would give the first systematic error anal-
ysis for the WAN structure in solving the second order parabolic PDEs. We decompose
the error into approximation error and statistical error. For the approximation error, we
show that the weak solution can be arbitrarily approximated by the ReLU2 network func-
tions with sufficiently large depth and width. To bound the statistical error, we introduce
the Rademacher complexity of the non-Lipschitz composition of derivatives, of which
the upper bound can be further obtained via using the concept of covering number and
pseudo-dimension.

In summary, our main contributions are as follows:

• Based on the classical Babuska-Brezzi theory [31] for parabolic problems, we bound
the error of WAN by the risk of optimal empirical solution, then we decompose the
error in risk into approximation error and statistical error, to which some recent
neural network approximation theory and learning theory can be applied.

• We obtain the upper bounds of the statistical error by using the concept of
Rademacher complexity, covering number and pseudo-dimension [32, 33]. The
main difficulty here is to bound the non-Lipschitz composition of the derivative.
The result tells us how to get the desired accuracy. See Theorem 5.1. Let d be the
dimension of the problem, D,W∈N be the depth and width of the neural network
function class we chose to approximate the weak solution and the test function,
B∈R+ is constant. For any ε≥0, if the number of sample satisfying:
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