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Abstract. Function approximation has been an indispensable component in modern reinforcement learning
algorithms designed to tackle problems with large state spaces in high dimensions. This paper reviews re-
cent results on error analysis for these reinforcement learning algorithms in linear or nonlinear approxima-
tion settings, emphasizing approximation error and estimation error/sample complexity. We discuss various
properties related to approximation error and present concrete conditions on transition probability and re-
ward function under which these properties hold true. Sample complexity analysis in reinforcement learning
is more complicated than in supervised learning, primarily due to the distribution mismatch phenomenon.
With assumptions on the linear structure of the problem, numerous algorithms in the literature achieve poly-
nomial sample complexity with respect to the number of features, episode length, and accuracy, although the
minimax rate has not been achieved yet. These results rely on the L∞ and UCB estimation of estimation error,
which can handle the distribution mismatch phenomenon. The problem and analysis become substantially
more challenging in the setting of nonlinear function approximation, as both L∞ and UCB estimation are in-
adequate for bounding the error with a favorable rate in high dimensions. We discuss additional assumptions
necessary to address the distribution mismatch and derive meaningful results for nonlinear RL problems.
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1 Introduction

Reinforcement learning (RL) studies how an agent can learn, through interaction with the
environment, an optimal policy that maximizes his/her long-term reward [52]. When
the problem involves a finite set of states and actions of moderate size, the correspond-
ing value or policy functions can be represented precisely as a table, which is called the
tabular setting. However, when the problem contains an enormous number of states or
continuous states, often in high dimensions, function approximation must be introduced
to approximate the involved value or policy functions. With the rapid development of
machine learning techniques for function approximation, modern reinforcement learning
(RL) algorithms increasingly rely on function approximation tools to tackle problems with
growing complexity, including video games [41], Go [50], and robotics [32].

Despite the astonishing practical success of RL with function approximation when ap-
plied to challenging high-dimensional problems, the theoretical understanding of RL al-
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gorithms with function approximation remains relatively limited, particularly when com-
pared to the theoretical results in the tabular setting. In the tabular setting, roughly speak-
ing, we can achieve the minimax sample complexity up to the logarithm term: we need
samples of the order of H3|S||A|/ǫ2 to obtain an ǫ-optimal policy, where H denotes the
episode length, |S| and |A| denote the size of the state space and action space (see [8,13,25]
for detailed discussions). Apparently, these kinds of results become vacuous when |S|
(and/or |A|) is extremely large or infinite. Therefore, the study of sample complexity
in the presence of function approximation has received considerable attention in recent
years in the RL community. Relatively simple function approximation methods, such as
the linear model in [29, 57] or generalized linear model in [37, 56] have been examined
in the context of RL algorithms. Meanwhile, nonlinear forms like kernel approxima-
tion [15, 39, 40, 58, 59] have also been studied in RL problems to further bridge the gap
between theoretical results under restrictive assumptions and practice.

In this paper, we review recent theoretical results in RL with function approximation,
from linear setting to nonlinear setting. We mainly focus on the results regarding approx-
imation error and estimation error/sample complexity, which are errors introduced by
function approximation and finite datasets, respectively. We first review the basic con-
cepts of RL in Section 2 and introduce two categories of RL algorithms: value-based meth-
ods and policy-based methods in Section 3. We are interested in these algorithms when
combined with function approximation. In Section 4, we give a general framework for the
theoretical analysis of RL with function approximation. We adopt the concepts of approxi-
mation error, estimation error, and optimization error from supervised learning to RL and
discuss the crucial challenges of analyzing these errors in RL. In Section 5, we introduce RL
algorithms with linear function approximation, as it is the simplest function approxima-
tion. We introduce the basic linear MDP assumption [29], which assumes that both reward
function and transition probability are linear with respect to d known features. Under this
or similar assumptions, the Q-value function can be represented as a linear function with
respect to the features, and numerous algorithms in the literature can achieve polynomial
sample complexity with respect to the number of features d, episode length H, and accu-
racy ǫ. However, the minimax sample complexity has not been achieved yet.

In Section 6, we further discuss RL with nonlinear function approximation. We first in-
troduce the theoretical results of supervised learning on reproducing kernel Hilbert space,
neural tangent kernel, and Barron space, and then discuss how to analyze the approxima-
tion error in RL problems with nonlinear function approximation. We then focus on the
distribution mismatch phenomenon, which is a crucial challenge of RL compared to su-
pervised learning when analyzing the estimation error in the presence of function approx-
imation. In tabular and linear settings, the distribution mismatch is handled by the L∞ and
UCB estimation. However, as we will point out, both L∞ and UCB estimation suffer from
the curse of dimensionality for various function spaces, including neural tangent kernel,
Barron space, and many common reproducing kernel Hilbert spaces. This challenge re-
veals an essential difficulty of RL problems with nonlinear function approximation, and
thus additional assumptions are needed to derive meaningful results for nonlinear RL in
the literature, including assumptions on the fast eigenvalue decay of the kernel and as-
sumptions on the finite concentration coefficient. We finally introduce the perturbational
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