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Abstract. Irreversible drift-diffusion processes are very common in biochemical re-
actions. They have a non-equilibrium stationary state (invariant measure) which does
not satisfy detailed balance. For the corresponding Fokker-Planck equation on a closed
manifold, using Voronoi tessellation, we propose two upwind finite volume schemes
with or without the information of the invariant measure. Both schemes possess
stochastic Q-matrix structures and can be decomposed as a gradient flow part and
a Hamiltonian flow part, enabling us to prove unconditional stability, ergodicity and
error estimates. Based on the two upwind schemes, several numerical examples –
including sampling accelerated by a mixture flow, image transformations and simu-
lations for stochastic model of chaotic system – are conducted. These two structure-
preserving schemes also give a natural random walk approximation for a generic irre-
versible drift-diffusion process on a manifold. This makes them suitable for adapting
to manifold-related computations that arise from high-dimensional molecular dynam-
ics simulations.
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1 Introduction

A general stationary (time-homogeneous) dynamical system with white noise, can be
modeled by a stochastic differential equation for yt ∈Rℓ

dyt =b(yt)dt+
√

2σdBt, (1.1)
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where σ is a noise matrix and Bt is an ℓ-dimensional Brownian motion. Denote D :=
σσT ∈Rℓ×ℓ. For simplicity, we assume D is a constant positive semi-definite matrix. By
Ito’s formula, SDE (1.1) gives the following Fokker-Planck equation, which is the master
equation for the time marginal density ρt(y)

∂tρ=−∇·(bρ)+∇·(D∇ρ)=:L∗ρ. (1.2)

In some physical systems, the drift vector field b =−D∇φ for some potential φ repre-
senting the energy landscape. Then the Gibbs measure π(y) ∝ e−φ(y) is the invariant
measure. The simplest example is the Ornstein-Uhlenbeck process with b(yt) =−γyt
and the diffusion coefficient σ=

√
εγ. In this case, (1.1) is called Langevin dynamics, and

the corresponding Fokker-Planck equation has a gradient flow structure; see (2.22). In
this Langevin dynamics case, the Markov process defined by (1.1) is reversible†, i.e., if
we take π as the initial density, the time-reversed process has the same law as that of
the forward process. Equivalently, the invariant measure satisfies the detailed balance
condition

steady flux Fπ :=−bπ+D∇π=0. (1.3)

However, numerous dynamical systems in physics and biochemistry are described by
irreversible Markov processes (without detailed balance), i.e., there does not exist a po-
tential function such that the drift vector field b = −D∇φ in (1.1). For instance, the
stochastic Lorenz system, the Belousov–Zhabotinsky reaction, or the Hodgkin–Huxley
model describe the excitation and propagation of sodium and potassium ions in a neu-
ron. The irreversibility in the nonequilibrium circulation balance is almost literally the
primary characteristic of life activities [19]. In this case, the invariant measure π is still
stationary in time, but there is a positive entropy production rate; see (3.12). Thus PRI-
GOGINE named such an invariant measure π as “stationary non-equilibrium states” or
“non-equilibrium steady states” in [29, Chapter VI]. We will simply call it steady state or
invariant measure. Later, Hill explains Prigogine’s theory using Markov chain stochastic
models for some simple biochemical reactions such as muscle contraction and clarifies
the formula (3.12) for the entropy production rate [19, eq. (9.20)]. Another situation is
that for a Markov process on manifold, which is induced via dimension reductions (such
as diffusion map [7]) from a higher dimensional Markov process based on collected data,
some classical schemes such as the Euler-Maruyama scheme will break the detailed bal-
ance property.

Therefore, in this paper we focus on designing numerical schemes to simulate a gen-
eral irreversible Markov process on a closed manifold N ; see (1.4). In terms of the SDE,
we will design a random walk approximation which enjoys ergodicity and accuracy. In
terms of Fokker-Planck equation (1.2), we will design two upwind schemes with a Q-
matrix‡ structure so that they also enjoy ergodicity, unconditionally stability and accu-
racy.

†In some physics literature, it is referred as microscopic reversibility [28].
‡a.k.a. infinitesimal generator matrix for a Markov chain
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