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Abstract. This paper considers weak Galerkin finite element approximations on
polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model. The spa-

tial discretization uses piecewise polynomials of degree k (k ≥ 1) for the stress

approximation, degree k+1 for the velocity approximation, and degree k for the nu-
merical trace of velocity on the inter-element boundaries. The temporal discretiza-

tion in the fully discrete method adopts a backward Euler difference scheme. We
show the existence and uniqueness of the semi-discrete and fully discrete solutions,

and derive optimal a priori error estimates. Numerical examples are provided to

support the theoretical analysis.
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1. Introduction

Let Ω ⊂ R
d(d = 2, 3) be a convex polyhedral domain with boundary ∂Ω, and T be

a positive constant. We consider the following quasistatic Maxwell viscoelastic model:

−divσ = f , (x, t) ∈ Ω× [0, T ], (1.1a)

σ + σt = Cε(ut), (x, t) ∈ Ω× [0, T ], (1.1b)

u = 0, (x, t) ∈ ∂Ω× [0, T ], (1.1c)

u(x, 0) = φ0(x), x ∈ Ω, (1.1d)

σ(x, 0) = ψ0(x), x ∈ Ω. (1.1e)
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Here u ∈ R
d is the displacement field, σ = (σij)d×d the symmetric stress tensor, ε(u) =

(∇u+(∇u)T )
2 the strain tensor, f the body force, φ0(x) and ψ0(x) are initial data, gt :=

∂g
∂t

for any function g(x, t), and C denotes an elastic module tensor such that for any

symmetric tensor τ = (τij)d×d a.e. x ∈ Ω one has

0 < M0τ : τ ≤ C
−1τ : τ ≤M1τ : τ , (1.2)

where M0 and M1 are two positive constants, and

ι : τ :=

d
∑

i=1

d
∑

j=1

ιijτij for ι, τ ∈ R
d×d.

Note that for an isotropic elastic medium we have

Cε(ut) = 2µε(ut)+ λ(∇ · ut)I,

where µ and λ are Lamé constants, and I the identity matrix.

In material science and continuum mechanics, viscoelasticity is the property of ma-

terials that exhibit both viscous and elastic characteristic when undergoing deforma-

tion. The Maxwell model, characterized by the governing constitutive relation (1.1b),

is one of classical models of viscoelasticity (see, e.g. [2, 12–14, 16, 18, 19, 33, 40, 41]

for some related works on the development and applications of viscoelasticity theory).

These models, including the Kelvin-Voigt model and the Zener model, are represented

by different combinations of purely elastic springs, which obey Hooke’s law, and purely

viscous dashpots, which obey Newton law. The Maxwell model consists of a spring and

a dashpot connected in series. We note that the general constitutive law of viscoelastic-

ity can be described in a unified framework by using convolution integrals in time with

some kernels [12,16,40].

In [5,6] Carcione et al. gave the first numerical simulation of wave propagation in

viscoelastic materials, and introduced memory variables to avoid the computation of

convolution integrals in the constitutive relation. Janovsky et al. [25] applied continu-

ous/discontinuous Galerkin finite element methods to discretize a linear viscoelasticity

model involving the hereditary constitutive relations for compressible solids. Ha et

al. [20] proposed a nonconforming finite element method for a viscoelastic complex

model in the space frequency domain. Bécache et al. [1] presented a family of mass

lumped mixed finite element methods, together with a leap-frog scheme in the time

discretization, for the Zener model. In [36–38] Rivière et al. analyzed discontinuous

Galerkin finite element discretizations of the quasistatic linear viscoelasticity and lin-

ear/nonlinear diffusion viscoelastic models, where a Crank-Nicolson temporal scheme

is used in the full discretization. Rognes and Winther [39] considered mixed finite el-

ement approximations with weak symmetric stresses for the quasistatic Maxwell and

Kelvin-Voigt models, where the temporal discretization uses a second backward dif-

ference scheme. In [42] Shi and Zhang applied the standard p-order rectangular finite


