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Abstract. More competent learning models are demanded for data processing due

to increasingly greater amounts of data available in applications. Data that we en-
counter often have certain embedded sparsity structures. That is, if they are rep-

resented in an appropriate basis, their energies can concentrate on a small number

of basis functions. This paper is devoted to a numerical study of adaptive approxi-
mation of solutions of nonlinear partial differential equations whose solutions may

have singularities, by deep neural networks (DNNs) with a sparse regularization
with multiple parameters. Noting that DNNs have an intrinsic multi-scale structure

which is favorable for adaptive representation of functions, by employing a penalty

with multiple parameters, we develop DNNs with a multi-scale sparse regularization
(SDNN) for effectively representing functions having certain singularities. We then

apply the proposed SDNN to numerical solutions of the Burgers equation and the

Schrödinger equation. Numerical examples confirm that solutions generated by the
proposed SDNN are sparse and accurate.
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1. Introduction

The goal of this paper is to develop a sparse regularization deep neural network

model for numerical solutions of nonlinear partial differential equations whose solu-

tions may have singularities. We will mainly focus on designing a sparse regularization

model by employing multiple parameters to balance sparsity of different layers and the
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overall accuracy. The proposed ideas are tested in this paper numerically to confirm

our intuition and more in-depth theoretical studies will be followed in a future paper.

Artificial intelligence especially deep neural networks (DNN) has received great at-

tention in many research fields. From the approximation theory point of view, a neural

network is built by functional composition to approximate a continuous function with

arbitrary accuracy. Deep neural networks are proven to have better approximation by

practice and theory due to their relatively large number of hidden layers. Deep neu-

ral network has achieved state-of-the-art performance in a wide range of applications,

including speech recognition [11], computer vision [28], natural language process-

ing [14], and finance [8]. For an overview of deep learning the readers are referred to

monograph [20]. Recently, there was great interest in applying deep neural networks

to the field of scientific computing, such as discovering the differential equations from

observed data [34], solving the partial differential equation (PDE) [21,29,30,35], and

problem aroused in physics [16]. Mathematical understanding of deep neural networks

received much attention in the applied mathematics community. A universal approxi-

mation theory of neural network for Borel measurable function on compact domain is

established in [9]. Some recent research studies the expressivity of deep neural net-

works for different function spaces [15], for example, Sobolev spaces, Barron functions,

and Hölder spaces. There are close connections between deep neural network and tra-

ditional approximation methods, such as splines [13,37], compressed sensing [1], and

finite elements [22,26]. Convergence of deep neural networks and deep convolutional

neural networks are studied in [40] and [41] respectively. Some work aims at under-

standing the training process of DNN. For instance, in paper [10], the training process

of DNN is interpreted as learning adaptive basis from data.

Traditionally, deep neural networks are dense and over-parameterized. A dense net-

work model requires more memory and other computational resources during training

and inference of the model. Increasingly greater amounts of data and related model

sizes demand the availability of more competent learning models. Compared to dense

models, sparse deep neural networks require less memory, less computing time and

have better interpretability. Hence, sparse deep neural network models are desirable.

On the other hand, animal brains are found to have hierarchical and sparse struc-

tures [19]. The connectivity of an animal brain becomes sparser as the size of the

brain grows larger. Therefore, it is not only necessary but also natural to design sparse

networks. In fact, it was pointed out in [25] that the future of deep learning relies on

sparsity. Furthermore, over-parameterized and dense models tend to lead to overfit-

ting and weakening the ability to generalize over unseen examples. Sparse models can

improve accuracy of approximation. Sparse regularization is a popular way to learn

the sparse solutions [5,38,39,42]. The readers are referred to [24] for an overview of

sparse deep learning.

Although much progress has been made in theoretical research of deep learning, it

remains a challenging issue to construct an effective neural network approximation for

general function spaces using as few neuron connections or neurons as possible. Most

of existing network structures are specific for a particular class of functions. In this


