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Abstract

In this paper, we introduce the application of random matrices in mathe-
matical physics including Riemann-Hilbert problem, nuclear physics, big data,
image processing, compressed sensing and so on. We start with the Riemann-
Hilbert problem and state the relation between the probability distribution
of nontrivial zeros and the eigenvalues of the random matrices. Through the
random matrices theory, we derive the distribution of Neutron width and prob-
ability density between energy levels. In addition, the application of random
matrices in quantum chromo dynamics and two dimensional Einstein gravity
equations is also present in this paper.
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1 Introduction

A random matrix, that is, every element in the matrix is a random variable, it was

first reported in mathematical statistics in 1930, but it didn’t get people’s attention.

The statistical asymptotic properties of its eigenvalues is seldom understood. It

was not until 1950 that physicists discovered that the statistical properties of slow

neutron resonances were related to random matrices in nuclear physics. In 1951,

Wigner [1] pointed out that the local statistical properties of nuclear levels were

related to the eigenvalues of random matrices. After that, it is closely related to the

quantum chromodynamics, the two-dimensional quantum Einstein gravity equation,

the electronic heat capacity of conventional superconducting nano-particles, the
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magnetic susceptibility of conventional superconducting metal nano-particles and

superconductivity. In 1962, mathematical physicist F.J. Dyson [2] pointed out an

important conjecture: The two point correlation function for the random matrix

and the two point correlation function for the zero point of Riemann Zeta function

are equivalent. In 1973, H.L. Montgomery gave the mathematical proof of this.

Computational mathematician Monte Caro performed a large number of calculations

to verify that the distribution of a large number of zeros of ζ(s) is consistent with

the Riemann Hypothesis.

As we known, Riemann proposed the famous Riemann Hypothesis in 1858: The

Riemann Zeta function is

ζ(s) =

∞∑
n=1

1

ns
= Πp

(
1− 1

ps

)−1

, Re s > 1,

where p labels primes and then by analytic continuation to the rest of the complex

plane. It has a single simple pole at s = 1, zeros at s = −2,−4,−6, · · · , and infinitely

many zeros, called the non-trivial zeros, in 0 < Re s < 1. The Riemann Hypothesis

states that all of the nontrivial zeros lie on the critical line of Re s = 1/2. At the

Second World Congress of Mathematicians, Hilbert presented twenty-three mathe-

matical problems, one of which was Riemann Hypothesis. To this day, the proof

of Riemann Hypothesis has become the most difficult and powerful yet unsolved

problem at present, because many important mathematical results could be estab-

lished follows from the proof of Riemann Hypothesis. Therefore, the random matrix

becomes an important tool in proving the Riemann Hypothesis, the computation

are used to verify that around 109 zeros of ζ function are all on Re s = 1/2. In ad-

dition, the theory of random matrices also plays an important role in the numerical

computation of large data and the robustness of perceptual compression.

2 Orthogonal Polynomial andRiemann-Hilbert Problem

Definition 2.1 Suppose that w(x) is a nonnegative and integrable function on

(a, b), where (a, b) is unbounded, then we ask the moments

µn =

∫ b

a
xnw(x)dx, n = 0, 1, 2, · · · (2.1)

are finite. If there exists a sequence of polynomials {Pn(x)}∞n=0 such that∫ b

a
Pm(x)Pn(x)w(x)dx = Knδmn, Kn 6= 0, (2.2)

then {Pn(x)} is called an orthogonal polynomial sequence with respect to the weight

function w(x) on (a, b).


