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Abstract

In this paper, we establish the existence result of solution and positive solu-
tion for two-point boundary value problem of a semilinear fractional differential
equation by using the Leray-Schauder fixed-point theorem. The discussion is
based on the system of integral equations on a bounded region.
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1 Introduction

Fractional differential equations have received increasing attention during the

past decades. It has attracted a lot of attention of researchers to promote the

continuous development of methods, theories and applications in the field of small

area estimation (see [1-3]). Fractional derivative is divided into two categories:

standard Riemann-Liouville derivative and Caputo fractional derivative.

The aim of this paper is to study the existence result of solution and positive

solution for the following two-point boundary value problem of the semilinear frac-

tional differential equation{
Dαu(t) + f(t, u(t), Dα−1u(t)) = 0, 0 6 t 6 1,

u(0) = 0, u(1) = B, Dα−1u(0) = C,
(1.1)

where 2 < α 6 3 and A,B,C are real numbers, Dα is the standard Riemann-

Liouville derivative, and f : [0, 1]×R×R → R is continuous on its domain. Such a
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nonlinearity term f(t, u(t), Dα−1u(t)) has been studied widely in [6,7]. In [6], by

means of the Schauder fixed point theorem and the Banach contraction principle

the authors investigated the existence and uniqueness of solutions for a class of

nonlinear multi-point boundary value problems for fractional differential equations
Dαu(t) + f(t, u(t), Dβu(t)) = 0, 0 6 t 6 1,

u(0) = 0, Dβu(1)−
m−2∑
i=1

ξiD
βu(ξi) = u0.

In [7], by means of a fixed point theorem on a cone, the authors investigated the

existence of positive solutions for the following singular fractional boundary value

problem {
Dαu(t) + f(t, u(t), Dµu(t)) = 0, 0 6 t 6 1,

u(0) = u(1) = 0.

The difference between [6] and [7], the system of integral equations is adopted

skillfully in this paper. In the literature of [8], A = 0 is the special case of this paper.

2 Preliminaries

For convenience, we present here the necessary definitions and some lemmas from

fractional calculus theory.

Definition 2.1[4] The Riemann-Liouville fractional integral of order α > 0 of

a function f : (0,∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds

provided the right side is pointwise defined on (0,∞).

Definition 2.2[4] The Riemann-Liouville fractional derivative of order α > 0

of a continuous function f : (0,∞) → R is given by

Dα
0+f(t) =

1

Γ(n− α)

( d

dt

)n
∫ t

0

f(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the real number α, provided the

right side integral is pointwise defined on [0, 1).

Lemma 2.1[4] Let α > 0. If we assume u ∈ C(0, 1)∩L(0, 1), then the fractional

differential equation

Dα
0+u(t) = 0

has u(t) = C1t
α−1 + C2t

α−2 + · · · + CN tα−N , Ci ∈ R, i = 1, 2, · · ·, N, which is a

unique solution, where N is the smallest integer greater than or equal to α.

Lemma 2.2[4] Assume that u ∈ C(0, 1)∩L(0, 1) with a fractional derivative of

order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then


