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Abstract. A variable-coefficient nonlocal diffusion model is discretized by an improved
fast collocation scheme. The resulting linear system has a symmetric positive definite
Toeplitz-like coefficient matrix. The preconditioned CG methods with Toeplitz and cir-
culant preconditioners are used for solving the discretized linear system. Numerical
experiments demonstrate the effectiveness of the preconditioned CG methods.
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1. Introduction

Nonlocal models represented by fractional differential equations [21,27] provide an
alternative tool for modeling of challenging phenomena such as anomalous diffusion and
long-range spatial interactions, which cannot be modeled properly by conventional integer-
order differential equations [16]. However, the numerical discretizations of such equations
lead to dense stiffness matrices, so that the usual direct solvers require @(N?) memory
storage and @(N3) computational cost, where N is the number of unknowns. The signi-
ficantly increased computational complexity and the memory requirements become one of
the main obstacles that hinders its applications.

In this paper, we consider a volume constrained Dirichlet boundary-value problem for
a nonlocal diffusion model with a variable-coefficient [15,16, 18, 20], viz.

x+6
f (a(x)+a(y))olx = y)(u(x)—u(y))dy = f(x), x€(a,b), (1.1)

-5
u(x)=g(x), xe€(a—6,a]Julb,b+56).

Here 6 > 0 refers to the size of the horizon specifying the range of the nonlocal diffu-
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sion phenomenon, and a is a smooth diffusivity coefficient with positive lower and upper
bounds. The kernel o(x) has the form

1
|x|1+}/'

o(x)= (1.2)
The index v < 1 specifies the intensity of the kernel, so the integral operator is weakly
singular.

In the model (1.1), the variable coefficient occurs inside of the integral operator. This
has a global impact on the discretization of the model, so that the number of summands
in the matrix decomposition in [29,30] will be of order &(N). Consequently, the corre-
sponding matrix-vector multiplication is of order @(N?). Recently, Che Wang and Hong
Wang [28] developed an alternative approach to handle the impact of variable coefficients
on the discretization of the nonlocal diffusion model. This leads to an optimal-order mem-
ory storage and approximately linear computational complexity of the numerical method.
Although the storage and calculation of this numerical method are relatively small, the cor-
responding stiffness matrix is not symmetric. It is known that solving non-symmetric linear
systems is a difficult problem, and to solve such system the conjugate gradient squared
(CGS) method [31] and the fast CGS (FCGS) method have been used in [28]. In actual cal-
culations, these two methods usually work well but because of rounding errors, the residual
modulus often vibrates too much, causing computational instability and even overflow.

For this reason, we make a small change to the numerical scheme [28], so that the new
stiffness matrix is symmetric positive definite under the premise that the storage amount
and calculation amount remain the same. The change we made was to re-evaluate the
elements of the stiffness matrix, so that we can apply the conjugate gradients (CG) method
to the discretized linear system. The CG algorithm is one of the best known iterative tech-
niques for solving sparse symmetric positive definite linear systems. The convergence of
this method is related to the spectral distribution of the matrix. It works well if the matrix
is well conditioned or if it has only a few distinct eigenvalues. If the spectrum of the ma-
trix is more evenly distributed over a long interval, the CG method converges very slowly.
Therefore, when the CG method is actually used, the corresponding linear system has to
be preconditioned so that the spectrum of the coefficient matrix is relatively concentrated.
This is the so-called preconditioned CG (PCG) method [17]. The use of a good precondi-
tioner can have significant effect upon improving the convergence rate of the CG method
— cf. [11] for more details.

Iterative solvers for Toeplitz systems are theoretically and numerically studied with nu-
merous applications for over twenty years [13, 14,22, 23]. However, the resulting dis-
cretized system for the variable-coefficient nonlocal diffusion model (1.1) is only a Toeplitz-
like one. Therefore, the corresponding methods for Toeplitz systems do not work well in
this situation. In recent years, several types of iteration methods have been developed for
solving Toeplitz-like systems arising in the discretization of fractional partial differential
equations [6,7,9,10,25,26], linear third-order ordinary differential equations [2, 3, 12],
and linear and nonlinear partial differential equations [1,4,5,8,24]. Motivated by the ideas
of [19], we construct Toeplitz and circulant preconditioners for the Toeplitz-like linear sys-



