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Abstract. We study the global well-posedness of large-data solutions to the
Cauchy problem of the energy critical Cahn-Hilliard-Brinkman equations in
R4. By developing delicate energy estimates, we show that for any given ini-
tial datum in H5(R4), there exists a unique global-in-time classical solution to
the Cauchy problem. As a special consequence of the result, the global well-
posedness of large-data solutions to the energy critical Cahn-Hilliard equation in
R4 follows, which has not been established since the model was first developed
over 60 years ago. The proof is constructed based on extensive applications
of Gagliardo-Nirenberg type interpolation inequalities, which provides a unified
approach for establishing the global well-posedness of large-data solutions to the
energy critical Cahn-Hilliard and Cahn-Hilliard-Brinkman equations for spatial
dimension up to four.
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1 Introduction

1.1 Background and object

The Cahn-Hilliard equation [7, 8]:

∂tφ=M∆
[
−ε∆φ+ε−1

(
φ3−φ

)]
(1.1)

is one of the fundamental models in mathematical physics, describing the evolu-
tionary process of phase separation of binary fluids. Here, the unknown function φ
denotes the relative difference of fluid concentrations, and µ≡−ε∆φ+ε−1(φ3−φ)
stands for the chemical potential which can be derived from a coarse-grained study
of the free energy of the fluid (c.f. [20]). The positive parameters M and ε model
the mobility and diffusive interface thickness, respectively.

Besides phase separation, the Cahn-Hilliard equation also appears in modeling
many other phenomena, including the evolution of two components of intergalactic
material [45], dynamical interaction of two populations [10], modeling of bacterial
film [25], and thin film problems [42,44]. Since its initiation in the 1950’s, the Cahn-
Hilliard equation has been serving as a foundation for the mathematical modeling of
phase separation. The success of the model is demonstrated through its capability
of capturing the essential features of spinodal decomposition (anti-nucleation).

Because of its physical background and mathematical features, the qualitative
and quantitative behaviors of the Cahn-Hilliard equation have been analyzed in the
mathematics literature to a great extent. We refer the reader to [1, 2, 9, 14, 16, 28,
37–39,41,47] for analytical investigations, to [22,23] for numerical simulations, and
to [27,29–34] for important progress recently made on the numerical analysis of the
model.

Meanwhile, because phase separation appears in many fluid-related problems, of
great interest to researchers in applied sciences is the coupling of the Cahn-Hilliard
equation with fluid dynamics equations.

For example, the Cahn-Hilliard-Navier-Stokes (CHNS) system:

∂tφ+∇·(uφ)=M∆µ, (1.2a)

µ=−ε∆φ+ε−1
(
φ3−φ

)
, (1.2b)

∂tu+u·∇u+∇π=ν∆u+γµ∇φ, (1.2c)

∇·u=0, (1.2d)

and its variants have been utilized to study phase separation in general incompress-
ible fluid flows (c.f. [4, 17, 21,35]).


