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Abstract. The p-step backward difference formula (BDF) for solving systems of
ODEs can be formulated as all-at-once linear systems that are solved by parallel-
in-time preconditioned Krylov subspace solvers (see McDonald et al. [36] and Lin
and Ng [32]). However, when the BDFp (2 < p < 6) method is used to solve time-
dependent PDEs, the generalization of these studies is not straightforward as p-step
BDF is not selfstarting for p > 2. In this note, we focus on the 2-step BDF which is
often superior to the trapezoidal rule for solving the Riesz fractional diffusion equa-
tions, and show that it results into an all-at-once discretized system that is a low-rank
perturbation of a block triangular Toeplitz system. We first give an estimation of the
condition number of the all-at-once systems and then, capitalizing on previous work,
we propose two block circulant (BC) preconditioners. Both the invertibility of these
two BC preconditioners and the eigenvalue distributions of preconditioned matrices
are discussed in details. An efficient implementation of these BC preconditioners is
also presented, including the fast computation of dense structured Jacobi matrices.
Finally, numerical experiments involving both the one- and two-dimensional Riesz
fractional diffusion equations are reported to support our theoretical findings.
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1. Introduction

In this paper, we are particularly interested in the efficient numerical solution
of evolutionary partial differential equations (PDEs) with both first order temporal
derivative and space fractional-order derivative(s). These models arise in various sci-
entific applications in different fields including physics [3], bioengineering [35], hy-
drology [37], and finance [44], etc., owing to the potential of fractional calculus to
describe rather accurately natural processes which maintain long-memory and hered-
itary properties in complex systems [27,35]. In particular, fractional diffusion equa-
tions can provide an adequate and accurate description of transport processes that ex-
hibit anomalous diffusion, for example subdiffusive phenomena and Lévy fights [38],
which cannot be modelled properly by second-order diffusion equations. As most frac-
tional diffusion equations can not be solved analytically, approximate numerical solu-
tions are sought by using efficient numerical methods such as, e.g., (compact) finite
difference [9, 10, 25, 31, 37, 46], finite element [54] and spectral (Galerkin) meth-
ods [51,52,56].

Many numerical techniques proposed in the literature for solving this class of prob-
lems are the common time-stepping schemes. They solve the underlying evolutionary
PDEs with space fractional derivative(s) by marching in time sequentially, one level
after the other. As many time steps may be usually necessary to balance the nu-
merical errors arising from the spatial discretization, these conventional time-stepping
schemes can be very time-consuming. This concern motivates the recent development
of parallel-in-time (PinT) numerical solutions for evolutionary PDEs (especially with
space fractional derivative(s)) including, e.g., the inverse Laplace transform method
[40], the MGRIT method [14, 18, 50, 54], the exponential integrator [15] and the
parareal method [49]. A class of PinT methods, i.e., the space-time methods, solves
the evolutionary PDEs at all the time levels simultaneously by performing an all-at-
once discretization that results into a large-scale linear system that is typically solved
by preconditioned Krylov subspace methods c.f., e.g., [2,4,7,16,20,29,34,41,42,47]
for more details. However, most of them only focus on the numerical solutions of
one-dimensional space fractional diffusion equations [20, 29,42,57] due to the huge
computational cost required for high-dimensional problems.

Recently, McDonald et al. proposed in [36] a block circulant (BC) preconditioner
to accelerate the convergence of Krylov subspace methods for solving the all-at-once
linear system arising from p-step BDF temporal discretization of evolutionary PDEs.
Parallel experiments with the BC preconditioner in [36] are reported by Goddard and
Wathen in [19]. In [32], a generalized version of the BC preconditioner has been
proposed by Lin and Ng who introduced a parameter « € (0,1) into the top-right



