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Abstract. Study about theory and algorithms for nonlinear programming usually as-
sumes that the feasible region of the problem is nonempty. However, there are many
important practical nonlinear programming problems whose feasible regions are not
known to be nonempty or not, and optimizers of the objective function with the least
constraint violation prefer to be found. A natural way for dealing with these problems
is to extend the nonlinear programming problem as the one optimizing the objective
function over the set of points with the least constraint violation. Firstly, the minimiza-
tion problem with least constraint violation is proved to be an Lipschitz equality con-
strained optimization problem when the original problem is a convex nonlinear pro-
gramming problem with possible inconsistent constraints, and it can be reformulated
as an MPCC problem; And the minimization problem with least constraint violation is
relaxed to an MPCC problem when the original problem is an nonlinear programming
problem with possible inconsistent non-convex constraints. Secondly, for nonlinear
programming problems with possible inconsistent constraints, it is proved that a local
minimizer of the MPCC problem is an M-stationary point and an elegant necessary
optimality condition, named as L-stationary condition, is established from the classi-
cal optimality theory of Lipschitz continuous optimization. Thirdly, properties of the
penalty method for the minimization problem with the least constraint violation are
developed and the proximal gradient method for the penalized problem is studied. Fi-
nally, the smoothing Fischer-Burmeister function method is constructed for solving the
MPCC problem related to minimizing the objective function with the least constraint
violation. It is demonstrated that, when the positive smoothing parameter approaches
to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point
of the equivalent MPCC problem.
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1 Introduction

For studying an ordinary nonlinear optimization problem, a basic assumption is that fea-
sible region of the optimization problem is nonempty. Many important theoretical issues
are well studied for an optimization problem under this assumption. For example, opti-
mality theory and sensitivity analysis are two main theoretical topics. Optimality theory
consists of necessary optimality conditions and sufficient optimality conditions. Sensitiv-
ity analysis studies continuity properties of the optimal value and the solution mapping
when the optimization is perturbed. For nonlinear programming, for a local minimizer,
the first-order necessary optimality conditions and the second-order optimality condi-
tions can be developed under certain constraint qualifications, and the second-order suf-
ficient optimality conditions imply the second-order growth condition, see for instance
the famous textbook [13]. For nonlinear programming, a series of stability results were
obtained by Robinson, see [14-16]. Bonnans and Shapiro [3] established the optimality
theory and the stability theory for general optimization problems, including problems
whose decision variables are infinite dimensional, nonlinear semidefinite programming
problems and other conic optimization problems.

However, when the feasible set is empty or the constraints are inconsistent, infeasi-
bility detection is an important issue for algorithmic design. Many numerical algorithms
have been proposed to find infeasible stationary points; namely, stationary points for
minimizing certain infeasibility measure. Byrd, Curtis and Nocedal [4] presented a set of
conditions to guarantee the superlinear convergence of their SQP algorithm to an infea-
sible stationary point. Burke, Curtis and Wang [5] considered the general program with
equality and inequality constraints, and proved that their SQP method has strong global
convergence and rapid convergence to the KKT point, and has superlinear/quadratic
convergence to an infeasible stationary point. Recently, Dai, Liu and Sun [7] proposed
a primal-dual interior-point method, which can be superlinearly or quadratically con-
vergent to the Karush-Kuhn-Tucker point if the original problem is feasible, and can
be superlinearly or quadratically convergent to the infeasible stationary point when the
problem is infeasible.

These algorithms can find a stationary point of the infeasibility measure, which have
nothing to do with the objective function of the problem. In practice, there are many
important problems that we need to find minimizers of the objective function over the
points with the least constraint violation. A natural way to deal with such problems is
to extend the constrained optimization problem as the one that optimizes the objective
function over the set of points with least constraint violation. When the feasible region
is nonempty, the set of points with least constraint violation coincides with the feasible
region of the constrained optimization problem and hence the extended constrained op-
timization problem coincides with the original problem.

Now we give a formal definition of infeasibility measure of an nonlinear program-
ming problem. Suppose that the nonlinear programming problem is of the following



