Non-simultaneous Blow-up Criteria for Localized Parabolic Equations*

LI FENG-JIE¹, LIU BING-CHEN¹ AND ZHENG SI-NING²

(1. College of Mathematics and Computational Science, China University of Petroleum, Dongying, Shandong, 257061)

(2. School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, 116024)

Abstract: This paper deals with blow-up solutions for parabolic equations coupled via localized exponential sources, subject to homogeneous Dirichlet boundary conditions. The criteria are proposed to identify simultaneous and non-simultaneous blow-up solutions. The related classification for the four nonlinear parameters in the model is optimal and complete.

Key words: non-simultaneous blow-up, simultaneous blow-up, critical exponent

2000 MR subject classification: 35K05, 35K60, 35B40, 35B33

Document code: A

Article ID: 1674-5647(2009)04-0379-06

1 Introduction and Main Results

In the present paper, we consider the following parabolic system coupled via localized sources

$$\begin{cases} u_{t} = \Delta u + e^{mu(0,t) + pv(0,t)}, \ v_{t} = \Delta v + e^{qu(0,t) + nv(0,t)}, & (x,t) \in \Omega \times (0,T), \\ u = v = 0, & (x,t) \in \partial\Omega \times (0,T), \\ u(x,0) = u_{0}(x), \ v(x,0) = v_{0}(x), & x \in \Omega, \end{cases}$$
(1.1)

where $\Omega = B_R = \{|x| < R\} \subset \mathbf{R}^N$, m, n, p, q are nonnegative constants, and the continuous functions $u_0(x), v_0(x)$ are nonnegative, nontrivial, radially symmetric, non-increasing, and vanish on ∂B_R . The existence and uniqueness of local classical solutions to (1.1) are well known (see, for example, [1]). Nonlinear parabolic systems like (1.1) come from population dynamics, chemical reactions, heat transfer, etc., where u and v represent the densities of two biological populations during a migration, the thicknesses of two kinds of chemical reactants, the temperatures of two different materials during a propagation, etc.

In 2002, Zheng et al.^[2] discussed the local problem

$$u_t = \Delta u + e^{mu+pv}, \quad v_t = \Delta v + e^{qu+nv}, \quad (x,t) \in \Omega \times (0,T)$$
 (1.2)

with homogeneous Dirichlet boundary conditions. The simultaneous blow-up rates are obtained for radially symmetric blow-up solutions in the region $\{0 \le m < q, \ 0 \le n < p\}$.

Foundation item: The NSF (10471013, 10771024) of China.

^{*}Received date: April 27, 2009.

Later, Zhao and Zheng^[3], Li and Wang^[4] studied the localized problem (1.1) with more general $\Omega \subset \mathbf{R}^N$ and $x_0 \in \Omega$. The critical blow-up exponents were obtained. Uniform blow-up profiles for simultaneous blow-up solutions were proved in the exponent region $\{0 \le m \le q, \ 0 \le n \le p\}$. If simultaneous blow-up happens in $\{0 \le q < m, \ 0 \le p < n\}$, the uniform blow-up profiles hold also. The other studies for parabolic systems with power or exponential nonlinearities can be found, e.g., in [5]–[7], where critical blow-up exponents, blow-up rates, and blow-up profiles were obtained.

Under the nonlinear source e^{mu} (e^{nv}), the component u (v) can blow up by itself for large initial data if m > 0 (n > 0). So there may be non-simultaneous blow-up as well, defined as, e.g.,

$$\limsup_{t \to T} \|u(\,\cdot\,,t)\|_{\infty} = +\infty, \qquad \sup_{t \in [0,T)} \|v(\,\cdot\,,t)\|_{\infty} < +\infty.$$

In contrast, the simultaneous blow-up means that

$$\limsup_{t \to T} \|u(\,\cdot\,,t)\|_{\infty} = \limsup_{t \to T} \|v(\,\cdot\,,t)\|_{\infty} = +\infty.$$

Motivated by the works above, in the present paper, we propose a complete and optimal classification for the simultaneous and non-simultaneous blow-up solutions of (1.1). Assume the initial data satisfy

$$\Delta u_0 + (1 - \varepsilon \varphi) e^{mu_0(0) + pv_0(0)}, \quad \Delta v_0 + (1 - \varepsilon \varphi) e^{qu_0(0) + nv_0(0)} \ge 0 \quad \text{in } B_R$$
 (1.3)

for some constant $\varepsilon \in (0,1)$, where φ is the first eigenfunction of

$$-\Delta \varphi = \lambda \varphi \quad \text{in } B_R$$

with $\varphi = 0$ on ∂B_R , normalized by

$$\|\varphi\|_{\infty} = 1, \quad \varphi > 0 \quad \text{in } B_R.$$

It is easy to check that $u_t, v_t \ge 0$ by the comparison principle.

The main results of the paper are the following criteria for identifying simultaneous and non-simultaneous blow-up in (1.1).

Theorem 1.1 There exists initial data such that non-simultaneous blow-up occurs in (1.1) if and only if m > q or n > p (for u or v blowing up alone, respectively).

Corollary 1.1 Any blow-up in (1.1) is simultaneous if and only if $m \le q$ and $n \le p$.

Theorem 1.2 Any blow-up in (1.1) is non-simultaneous if and only if m > q with $n \le p$ (for u blowing up alone), or n > p with $m \le q$ (for v blowing up alone).

Theorem 1.3 Both simultaneous and non-simultaneous blow-up may occur in (1.1) if and only if m > q and n > p.

In summary, the complete and optimal classification for simultaneous and non-simultaneous blow-up solutions of (1.1) can be shown by the following figure: