Communications in Mathematical Research **25**(4)(2009), 289–298

Weighted Approximation by Left Quasi-interpolants of Derivatives of Gamma Operators*

JIANG HONG-BIAO

(Department of mathematics, Lishui University, Lishui, Zhejiang, 323000)

Communicated by Ma Fu-ming

Abstract: In order to obtain much faster convergence, Müller introduced the left Gamma quasi-interpolants and obtained an approximation equivalence theorem in terms of $\omega_{\varphi}^{2r}(f,t)_p$. Guo extended the Müller's results to $\omega_{\varphi^{\lambda}}^{2r}(f,t)_{\infty}$. In this paper we improve the previous results and give a weighted approximation equivalence theorem.

Key words: Gamma operator, quasi-interpolant, weighted approximation, modulus of smoothness, derivative

2000 MR subject classification: 41A25, 41A35, 41A36

Document code: A

 $\textbf{Article ID:}\ 1674\text{-}5647 (2009) 04\text{-}0289\text{-}10$

1 Introduction

Gamma operators are given by

$$G_n(f,x) = \int_0^\infty g_n(x,t) f\left(\frac{n}{t}\right) dt, \qquad x \in I = [0,\infty), \tag{1.1}$$

with the kernel

$$g_n(x,t) = \frac{x^{n+1}}{n!} e^{-xt} t^n.$$

Sometimes, we also use an alternate representation

$$G_n(f,x) = \frac{1}{n!} \int_0^\infty e^{-t} t^n f\left(\frac{nx}{t}\right) dt, \qquad x \in I.$$
 (1.2)

These operators have been investigated in a series of papers (see [1]–[4] and the references therein). The optimal degree of approximation of the method of Gamma operators G_n in L_p space is $O(n^{-1})$. In order to obtain much faster convergence, quasi-interpolants $G_n^{(k)}$ of G_n in the sense of Sablonnière^[5] are considered in [6]–[9].

Foundation item: The NSF (102005) of Zhejiang Province, China.

^{*}Received date: Oct. 19, 2006.

We first recall the construction of the left Gamma quasi-interpolants (see [8])

$$G_n^{(k)}(f,x) = \sum_{j=0}^k \alpha_j^n(x) D^j G_n(f,x), \qquad 0 \le k \le n,$$
(1.3)

where $D^j = \frac{\mathrm{d}^j}{\mathrm{d}x^j}$, $D^0 = id$ and $\alpha^n_j(x) \in \Pi_j$ (the space of algebraic polynomials of degree at most j). In [8] Müller obtained an approximation equivalence theorem: for $f \in L_p(I)$, $1 \le p \le \infty$, $\varphi(x) = x$, $n \ge 4r$, $r \in N$, and $0 < \alpha < r$, one has

$$||G_n^{(2r-1)}f - f||_p = O(n^{-\alpha}) \iff \omega_{\wp}^{2r}(f, t)_p = O(t^{2\alpha}).$$
 (1.4)

In [7] Guo et al. gave a weighted approximation equivalence theorem for $G_n^{(2r-1)}(f,x)$ in L_{∞} space: for $f \in L_{\infty}(I)$, $0 \le \lambda \le 1$, $\varphi(x) = x$, $w(x) = x^a(1+x)^b$ ($a \ge 0$, b is arbitrary), $n \ge 4r$, and $0 < \alpha < 2r$, one has

$$|w(x)(G_n^{(2r-1)}(f,x) - f(x))| = O((n^{-\frac{1}{2}}\varphi^{1-\lambda}(x))^{\alpha}) \iff \omega_{\varphi^{\lambda}}^{2r}(f,t)_w = O(t^{\alpha}).$$
 (1.5)

In this paper we consider a weighted approximation for $G_{n,s}^{(2r-1)}(f^{(s)},x)$ in L_{∞} space.

Theorem 1.1 For $f^{(s)}, wf^{(s)} \in L_{\infty}(I)$, $0 \le \lambda \le 1$, $\varphi(x) = x$, $w(x) = x^a(1+x)^b$, $n-s \ge 4r$, $0 < \alpha - s < 2r$, $s \in N_0 = N \cup \{0\}$, one has

$$|w(x)(G_{n,s}^{(2r-1)}(f^{(s)},x) - f^{(s)}(x))| = O((n^{-\frac{1}{2}}\varphi^{1-\lambda}(x))^{\alpha-s}) \iff \omega_{\varphi^{\lambda}}^{2r}(f^{(s)},t)_{w} = O(t^{\alpha-s}).$$
(1.6)

In L_{∞} space, when s = 0, (1.6) is (1.5); when s = 0, a = b = 0, $\lambda = 1$, (1.6) is (1.4).

Throughout this paper $\|\cdot\|$ denotes $\|\cdot\|_{\infty}$, and C denotes a positive constant independent of n, x and not necessarily the same at each occurrence.

2 Preliminaries and Lemmas

In this section, for $0 \le \lambda \le 1$, $0 < \alpha - s < 2r$, $s \in N_0$, we first give some notations as follows:

$$||f||_{0} = \sup_{x \in (0,\infty)} |w(x)\varphi^{(\alpha-s)(\lambda-1)}(x)f(x)|,$$

$$C_{\lambda,w}^{0} = \{f|wf \in L_{\infty}, ||f||_{0} < \infty\},$$

$$||f||_{2r} = \sup_{x \in (0,\infty)} |w(x)\varphi^{2r+(\alpha-s)(\lambda-1)}(x)f^{(2r)}(x)|,$$

$$C_{\lambda,w}^{2r} = \{f \in C_{\lambda,w}^{0} : f^{(2r-1)} \in A.C._{loc}, ||f||_{2r} < \infty\}.$$

The modulus of smoothness and K-functional we will use later are defined as follows (see [1]):

$$\omega_{\varphi^{\lambda}}^{r}(f,t)_{w} = \begin{cases} \sup_{0 < h \le t} \|w \triangle_{h\varphi^{\lambda}}^{r} f\|, & a = 0; \\ \sup_{0 < h \le t} \|w \triangle_{\varphi^{\lambda}}^{r} f\|_{[t^{*},\infty)} + \sup_{0 < h \le t^{*}} \|w \vec{\triangle}_{h}^{r} f\|_{[0,12t^{*}]}, & a > 0, \end{cases}$$

where

$$t^* = \begin{cases} (rt)^{\frac{1}{1-\lambda}}, & 0 < t < \frac{1}{8r}, \ 0 \le \lambda < 1; \\ 0, & \lambda = 1, \end{cases}$$