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Abstract. The exact analytical expression of the period of a conservative nonlinear
oscillator with a non-polynomial potential, is obtained. Such an oscillatory sys-
tem corresponds to the transverse vibration of a particle attached to the center of
a stretched elastic wire. The result is given in terms of elliptic functions and val-
idates the approximate formulae derived from various approximation procedures
as the harmonic balance method and the rational harmonic balance method usually
implemented for solving such a nonlinear problem.
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1 Introduction

We consider a one-dimensional oscillator of motion equation,

ẍ + x − λx√
x2 + 1

= 0, 0 ≤ λ ≤ 1. (1.1)

This nonlinear ODE describes in a dimensionless form, for instance, the transverse vi-
bration of a particle attached to the centre of a stretched elastic wire. Such an oscillator
has been first analyzed by Mickens [1], and more recently reconsidered, among many
others, by Beléndez et al. [2], Sun et al. [3] and Gimeno et al. [4]. The parameter λ is
a geometrical deformation characteristic of the wire when the oscillator is at rest. For
such a conservative system, the total energy

E =
ẋ2

2
+

x2

2
− λ

√
x2 + 1,
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is conserved and the motion of the particle is oscillatory for any energy value E > −λ.
Notice that the energy is, in principle, defined up to a constant: for simplifying further
the calculations, our convention is to fix the energy minimum at the value −λ, and not
zero as customarily assumed in the works previously indicated.

It is known that the oscillation period depends on energy and is given by the inte-
gral [5],

Tλ(E) =
√

2
∫ xm(E)

−xm(E)

(
E − 1

2
x2 + λ

√
x2 + 1

)− 1
2
dx, (1.2)

where the turning points −xm and xm (xm > 0) of the trajectory at energy E are the
two real solutions of the equation,

E − 1
2

x2 + λ
√

x2 + 1 = 0,

such that,

xm =
√

2

√√
λ2

(
λ2 + 2E + 1

)
+

(
λ2 + E

)
. (1.3)

In addition, it is worth noting that if λ ≥ 1/2 and −λ < E ≤ −1/2, the latter equation
has also the two following imaginary solutions,

±iκ = ±i
√

2

√√
λ2

(
λ2 + 2E + 1

)
−

(
λ2 + E

)
, (1.4)

such that 0 < κ ≤ 1 (equality when E = −1/2).
The calculation of Eq. (1.2) is not straightforward, and to the best of our knowl-

edge, such an exact result cannot be found anywhere. Only approximate solutions ex-
ist which are derived, for instance, by means of the harmonic balance method [2,3], the
rational balance method [4], the energy balance method [6], the parameter-expansion
method [7] or using a variational approach [8] when applied for solving Eq. (1.1).

In this note, we derive an exact closed-form expression for the period function
Tλ(E) in terms of complete elliptic integrals of the first and third kinds. Such a result
is obtained thanks to appropriate integrations in the complex plane, as detailed in
Sections 2 and 3. We summarize our main result in Section 4 and give, finally in the
last section, accurate estimates of the period for small and large amplitude oscillations
which validate the nonlinear analytical methods usually employed for solving this
problem.

2 Integration in the complex plane

2.1 case I : for 0 < λ < 1
2

The function of a complex variable z = x + iy,

f (z) =
(

E − 1
2

z2 + λ
√

z2 + 1
)− 1

2
, (2.1)


