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Abstract: In this paper, we study regular simple ω2-semigroups in which D|ES = Wd

by the generalized Bruck-Reilly extension and obtain its structure theorem.
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1 Introduction

For any semigroup S we denote by ES the set of idempotents of S. Let S be a semigroup

whose set ES is non-empty. We define a partial order “≥” on ES such that e ≥ f if

and only if ef = f = fe. Denote by N the set of all non-negative integers and by N+

the set of all positive integers. If ES = {ei : i ∈ N} and the elements of ES form a

chain e0 > e1 > e2 > · · · , then S is called an ω-semigroup. We denote by Cω the set

{e0, e1, e2, · · · } with e0 > e1 > e2 > · · · We partially order N×N in the following manner:

for (m,n), (p, q) ∈ N×N,

(m,n) ≤ (p, q) if and only if m > p, or m = p and n ≥ q.

The set N × N with the partial order is called an ω2-chain, and is denoted by C2
ω. Any

partially ordered set order isomorphic to C2
ω is also called an ω2-chain. We say that a

semigroup S is an ω2-semigroup if ES is order isomorphic to C2
ω. Thus, if S is an ω2-

semigroup, then we can write

ES = {em,n : m,n ∈ N},
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where em,n ≤ ep,q if and only if (m,n) ≤ (p, q). In [1], the structure of a bisimple ω-

semigroup is shown to be determined entirely by its group of units and an endomorphism

of its group of units. Munn[2] studied and classified regular ω-semigroups which are entirely

determined by a sequence of groups Gi (i = 0, 1, · · · , d − 1), homomorphism γd−1 of the

form Gd−1 → G0 and homomorphism γi of the form Gi → Gi+1 (i = 0, · · · , d − 2) if

d > 1, where the integer d is characterized as the number of distinct D-classes in this

kind of semigroups. Warne[3] investigated the bisimple ωn-semigroups, and proved that any

bisimple ωn-semigroup has a structure as (G × Cn, ◦ ), where G is a group and Cn is a

2n-cyclic semigroup, under a suitable multiplication.

Regular simple ω2-semigroups can be regarded as a natural generalization of regular

simple ω-semigroups. We manage to do the similar work in [2] in this paper for regular simple

ω2-semigroups. Section 2 presents some information and other necessary notations and

terminology. In Section 3 we construct a regular simple ω2-semigroup in which D|ES
= Wd

from a sequence of groups Gi (i = 0, 1, · · · , d− 1), homomorphism β, homomorphism γ and

an element u of G0 by the generalized Bruck-Reilly extension. The integer d is characterized

as the number of distinctD-classes in such semigroups. It is then proved in Section 4 that this

construction provides the most general regular simple ω2-semigroup in which D|ES
= Wd.

2 Definitions and Preliminaries

We use the terminologies and notations in Howie[4] and Petrich[5]. Let a, b be the elements

of a semigroup S. Then a and b are said to be L[R]-equivalent if and only if S1a = S1b

[aS1 = bS1]. We write H = L ∩ R and D = L ∨ R = L ◦ R = R ◦ L. Then L, R, H
and D are equivalence relations on S such that H ⊆ L ⊆ D and H ⊆ R ⊆ D. Write

D|ES
= D ∩ (ES × ES). A semigroup is called bisimple if it contains only one D-class. A

semigroup without zero is called simple if it has no proper ideals. A semigroup is simple if

and only if for a, b in S there exist x, y in S such that xay = b. We denote by La[Ra,Ha, Da]

the L[R,H,D]-class of S containing the element a. For an ω2-semigroup S with ES = {em,n :

m,n ∈ N}, let Rm,n be the R-class containing an idempotent em,n, and Lp,q be the L-class
with idempotent ep,q, that is,

Rm,n = {a ∈ S : aRem,n}, Lp,q = {a ∈ S : aLep,q}.
Let H(m,n),(q,p) be the Rm,n ∩ Lp,q, that is,

H(m,n),(q,p) = {a ∈ S : em,nRaLep,q}.
If H(m,n),(q,p) ̸= ∅, then, evidently, H(m,n),(q,p) is an H-class of S.

Wang and Shang[6] have shown that the set S = N × N × N × N with the operation

defined by

(m, n, q, p)(a, b, d, c) =


(m, max{q, b} − q + n, max{q, b} − b+ d, c), p = a;

(m, n, q, p− a+ c), p > a;

(a− p+m, b, d, c), p < a

is a bisimple ω2-semigroup and called it the quadrucyclic semigroup, which is denoted by

Bω2 . Wang and Shang[6] have introduced the generalized Bruck-Reilly extension also. Let


