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Abstract: In this note, we prove a concentration theorem of (R, p)-anders. As a

simple corollary, one can prove that (X, p)-anders do not admit coarse embeddings

into Hadamard manifolds with bounded sectional curvatures.
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Coarse Baum-Connes Conjecture is one of the most important conjectures in the non-

commutative geometry. It provides an algorithm of calculation of indices of certain differen-

tial operators. For example, it implies the zero-in-the-specturm conjecture stating that the

Laplacian operator acting on the space of all L2-forms of a uniformly contractible Rieman-

nian manifold has zero in its spectrum (see [1]). The celebrated work of Yu[2] asserts that

any metric spaces which can be coarsely embedded into Hilbert space satisfy the Coarse

Baum-Connes Conjecture. Later Yu and Kasparov[1] prove that any metric spaces which

can be coarsely embedded into a uniformly convex Banach space satisfy the injectivity of

Coarse Baum-Connes Conjecture. Recently, Chen et al.[3] prove the maximal Coarse Baum-

Connes Conjecture for spaces which admit a fibred coarse embedding into Hilbert space.

On the other hand, now it is well-known that expanders do not admit a coarse embedding

into Hilbert spaces and there exist expanders which do not admit a coarse embedding into

uniformly convex Banach space (see [4]). Gong et al.[5] prove the Coarse Geometric Novikov

Conjecture for a large class of expanders, especially the expanders in [4]. The Coarse Novikov

Conjecture, or the maximal Coarse Novikov Conjecture, is known to be true for more classes

of expanders by [6]–[9]. Moreover, Oyono-Oyono and Yu[8] also prove isomorphism of the

maximal version of the coarse assembly map. These facts make the study of expanders
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extremely important in the non-commutative geometry.

The non-coarse embeddability of expanders into Hilbert space is triggered by a concen-

tration theorem of expanders. In [10], a concentration theorem of expanders for Banach

space whose unit balls are uniformly embeddable into Hilbert space is proved. In [11], the

author proves a concentration theorem of expanders for Hadamard manifolds.

Recently, Mimura[12] introduces Banach spectral gap and (X, p)-anders. Here we prove

a concentration theorem for (R, p)-anders for Hadamard manifolds.

First, let us recall basics of (X, p)-anders (see [12]). Let G = (V,E) be a finite graph

with the vertex set V and the edge set E. Denote the cardinality of V and E by |V | and |E|,
respectively. The degree of a vertex v is the number of edges incident to v. The maximum

degree of G, denoted by ∆(G), is the maximum degree of its vertices. We equip G with the

path metric and regard as a metric space.

Definition 1[12] Let (X, p) be a pair of a Banach space X and an exponent p > 0.

(I) The Banach spectral gap is defined as follows: the (X, p)-spectral gap of G, written

as λ1(G;X, p), is

λ1(G;X, p) = inf
f

1

2
·

∑
v∈V

∑
e=(v,w)∈E

∥f(w)− f(v)∥p

∑
v∈V

∥f(v)−m(f)∥p
.

Here f : V → X runs over all nonconstant maps and m(f) =
1

|V |
∑
v∈V

f(v);

(II) A sequence of finite connected graphs {Gn} is called (X, p)-anders if the following

three conditions are satisfied:

(1) sup
n

∆(Gn) < ∞;

(2) lim
n→∞

|Vn| = ∞;

(3) inf
n

λ1(Gn;X, p) > 0.

In this definition, we do not require the orientation of graphs. Every edges are counted

twice. Hence there is “
1

2
” in the definition. As mentioned in [12], (R, 2)-anders are expanders

in usual sense.

A graph is called regular if every vertex has the same degree. A graph is called simple if

there is no edge connecting a vertex to itself. From now on, we focus on regular and simple

graphs.

Since R can be isometrically embedded into any non-trivial Banach space X, we have

λ1(G;R, p) ≥ λ1(G;X, p).

Hence (X, p)-anders are (R, p)-anders.

In the following calculations, we repeatedly use Jensen’s inequality

ϕ

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

ϕ(xi)

for convex function ϕ. Norm functions and xp with p ≥ 1 are convex functions.


