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Abstract: In this note, we prove a concentration theorem of (R,p)-anders. As a
simple corollary, one can prove that (X, p)-anders do not admit coarse embeddings
into Hadamard manifolds with bounded sectional curvatures.
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Coarse Baum-Connes Conjecture is one of the most important conjectures in the non-
commutative geometry. It provides an algorithm of calculation of indices of certain differen-
tial operators. For example, it implies the zero-in-the-specturm conjecture stating that the
Laplacian operator acting on the space of all L?-forms of a uniformly contractible Rieman-
nian manifold has zero in its spectrum (see [1]). The celebrated work of Yul? asserts that
any metric spaces which can be coarsely embedded into Hilbert space satisfy the Coarse
Baum-Connes Conjecture. Later Yu and Kasparov!!! prove that any metric spaces which
can be coarsely embedded into a uniformly convex Banach space satisfy the injectivity of
Coarse Baum-Connes Conjecture. Recently, Chen et al.’] prove the maximal Coarse Baum-
Connes Conjecture for spaces which admit a fibred coarse embedding into Hilbert space.
On the other hand, now it is well-known that expanders do not admit a coarse embedding
into Hilbert spaces and there exist expanders which do not admit a coarse embedding into
uniformly convex Banach space (see [4]). Gong et al.%! prove the Coarse Geometric Novikov
Conjecture for a large class of expanders, especially the expanders in [4]. The Coarse Novikov
Conjecture, or the maximal Coarse Novikov Conjecture, is known to be true for more classes
of expanders by [6]-[9]. Moreover, Oyono-Oyono and Yul® also prove isomorphism of the

maximal version of the coarse assembly map. These facts make the study of expanders

Received date: Sept. 2, 2014.
E-mail address: lin.shan@Qupr.edu (Shan L).



98 COMM. MATH. RES. VOL. 32

extremely important in the non-commutative geometry.

The non-coarse embeddability of expanders into Hilbert space is triggered by a concen-
tration theorem of expanders. In [10], a concentration theorem of expanders for Banach
space whose unit balls are uniformly embeddable into Hilbert space is proved. In [11], the
author proves a concentration theorem of expanders for Hadamard manifolds.

Recently, Mimural’?! introduces Banach spectral gap and (X, p)-anders. Here we prove
a concentration theorem for (R, p)-anders for Hadamard manifolds.

First, let us recall basics of (X, p)-anders (see [12]). Let G = (V, E) be a finite graph
with the vertex set V' and the edge set E. Denote the cardinality of V and E by |V| and |E|,
respectively. The degree of a vertex v is the number of edges incident to v. The maximum
degree of G, denoted by A(G), is the maximum degree of its vertices. We equip G with the
path metric and regard as a metric space.

Definition 112 Let (X,p) be a pair of a Banach space X and an exponent p > 0.
(I) The Banach spectral gap is defined as follows: the (X, p)-spectral gap of G, written

as \(G; X, p), is
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Here f:V — X runs over all nonconstant maps and m(f) = G Z f(v);
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(IT) A sequence of finite connected graphs {Gy} is called (X, p)-anders if the following

three conditions are satisfied:
(1) sup A(G,) < oc;
@) Jim V] = oc;
(3) i%f M(Gr; X, p) > 0.

In this definition, we do not require the orientation of graphs. Every edges are counted

«w-»

twice. Hence there is in the definition. As mentioned in [12], (R, 2)-anders are expanders
in usual sense.

A graph is called regular if every vertex has the same degree. A graph is called simple if
there is no edge connecting a vertex to itself. From now on, we focus on regular and simple
graphs.

Since R can be isometrically embedded into any non-trivial Banach space X, we have

M(GiR,p) > Mi(G; X, p).
Hence (X, p)-anders are (R, p)-anders.

In the following calculations, we repeatedly use Jensen’s inequality
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for convex function ¢. Norm functions and P with p > 1 are convex functions.



