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Abstract. In this paper we study the effect of the artificial regularization term for the
second order accurate (in time) numerical schemes for the no-slope-selection (NSS)
equation of the epitaxial thin film growth model. In particular, we propose and ana-
lyze an alternate second order backward differentiation formula (BDF) scheme, with
Fourier pseudo-spectral spatial discretization. The surface diffusion term is treated im-
plicitly, while the nonlinear chemical potential is approximated by a second order ex-
plicit extrapolation formula. A second order accurate Douglas-Dupont regularization
term, in the form of −A∆t∆2

N(u
n+1−un), is added in the numerical scheme to justify

the energy stability at a theoretical level. Due to an alternate expression of the nonlin-
ear chemical potential terms, such a numerical scheme requires a minimum value of
the artificial regularization parameter as A= 289

1024 , much smaller than the other reported
artificial parameter values in the existing literature. Such an optimization of the arti-
ficial parameter value is expected to reduce the numerical diffusion, and henceforth
improve the long time numerical accuracy. Moreover, the optimal rate convergence
analysis and error estimate are derived in details, in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2

h) norm,
with the help of a linearized estimate for the nonlinear error terms. Some numerical
simulation results are presented to demonstrate the efficiency and accuracy of the al-
ternate second order numerical scheme. The long time simulation results for ε= 0.02
(up to T=3×105) have indicated a logarithm law for the energy decay, as well as the
power laws for growth of the surface roughness and the mound width.
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1 Introduction

The no-slope-selection (NSS) epitaxial thin film growth equation is the L2 gradient flow
associated with the following energy functional

E(u) :=
∫

Ω

(
−1

2
ln(1+|∇u|2)+ ε2

2
|∆u|2

)
dx, (1.1)

in which Ω=(0,Lx)×(0,Ly), u : Ω→R is a periodic height function, and ε is a constant
parameter of transition layer width. In fact, the first non-quadratic term represents the
Ehrlich-Schwoebel (ES) effect, which means that an atom has to overcome a higher energy
barrier to stick to a step from an upper rather than from a lower terrace [11,21–23,33]. This
results in an uphill atom current in the dynamics and the steepening of mounds in the
film. The second higher order quadratic term represents the isotropic surface diffusion
effect [22,27]. In turn, the chemical potential becomes the following variational derivative
of the energy

µ :=δuE=∇·
( ∇u

1+|∇u|2
)
+ε2∆2u, (1.2)

and the dynamical equation stands for the L2 gradient flow

∂tu=−µ=−∇·
( ∇u

1+|∇u|2
)
−ε2∆2u. (1.3)

On the other hand, under a small-slope assumption that |∇u|2 ≪1, (1.3) may be approx-
imated as

∂tu=∇·
(
|∇u|2∇u

)
−∆u−ε2∆2u, (1.4)

with the energy functional given by a polynomial approximation

E(u)=
∫

Ω

(
1

4
(|∇u|2−1)2+

ε2

2
|∆u|2

)
dx. (1.5)

This model is referred to as the slope-selection (SS) equation [19, 20, 22, 27]. A solution to
(1.4) exhibits pyramidal structures, where the faces of the pyramids have slopes |∇u|≈1;
meanwhile, the no-slope-selection equation (1.3) exhibits mound-like structures, and the
slopes of which (on an infinite domain) may grow unbounded [22, 35]. Both solutions
have up-down symmetry in the sense that there is no way to distinguish a hill from a
valley. This can be altered by adding adsorption/desorption or other dynamics.


