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Abstract. In this paper, we study the Crank-Nicolson Galerkin finite element method
and construct a two-grid algorithm for the general two-dimensional time-dependent
Schrödinger equation. Firstly, we analyze the superconvergence error estimate of
the finite element solution in H1 norm by use of the elliptic projection operator.
Secondly, we propose a fully discrete two-grid finite element algorithm with Crank-
Nicolson scheme in time. With this method, the solution of the Schrödinger equation
on a fine grid is reduced to the solution of original problem on a much coarser grid
together with the solution of two Poisson equations on the fine grid. Finally, we
also derive error estimates of the two-grid finite element solution with the exact
solution in H1 norm. It is shown that the solution of two-grid algorithm can achieve
asymptotically optimal accuracy as long as mesh sizes satisfy H = O(h

1
2 ).
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1. Introduction

The Schrödinger equation is a fundamental equation in quantum mechanics which
can describe many physical phenomena in plasma physics, optics and water waves.
In this paper, we consider the following initial boundary value problem of the two-
dimensional time-dependent Schrödinger equation:

iut(x, t) = −∆u(x, t) + V (x, t)u(x, t) + f(x, t), ∀(x, t) ∈ Ω× [0, T ],

u(x, t) = 0, ∀(x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = u0(x), ∀(x, t) ∈ Ω,

(1.1)
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where Ω ⊂ R2 is a convex polygonal domain with smooth boundary ∂Ω, functions
f(x, t) and unknown function u(x, t) are complex-valued, ∆ is the usual Laplace oper-
ator, u0(x) is a smooth given complex-valued function, the potential function V (x, t) is
real-valued and non-negative for all (x, t) ∈ Ω × [0, T ], functions V (x, t), Vt(x, t) and
Vtt(x, t) are bounded for all (x, t) ∈ Ω× [0, T ], and i is the complex unit with i =

√
−1.

Numerical methods for the Schrödinger equation have been studied extensively,
such as spectral method [1–4], finite element method [5–18], local discontinuous
Galerkin method [19–21], finite difference method [22–24], and others [25, 26].
Huang et al. [2] applied the time-splitting Fourier pseudospectral method on the gen-
eralized sparse grids to solve the space-fractional Schrödinger equation. Akrivis et
al. [5] approximated the solutions of a nonlinear Schrödinger equations by two Crank-
Nicolson fully discrete finite element schemes. Shi and Wang [12] studied a linearized
Crank-Nicolson Galerkin finite element method with bilinear element for nonlinear
Schrödinger equation. Wang and Chen [16] analyzed the superconvergence result
for a two-dimensional time-dependent linear Schrödinger equation with the finite el-
ement method. Xu and Shu [21] developed a local discontinuous Galerkin method
to solve the generalized nonlinear Schrödinger equation and the coupled nonlinear
Schrödinger equation. Bao and Cai [22] establish uniform error estimates of finite dif-
ference methods for the nonlinear Schrödinger equation (NLS) perturbed by the wave
operator (NLSW) with a perturbation strength described by a dimensionless parameter
ε (ε ∈ (0, 1]).

Two-grid method is proposed by Xu [27–29] as a discretization method for non-
symmetric, indefinite and nonlinear partial differential equations. Huang et al. [30,31]
proposed the multi-level iterative method for solving finite element equations of non-
linear elliptic problems. Chen et al. [33–35] applied this method to reaction-diffusion
equations and miscible displacement problem. Bi et al. [36] considered two-grid fi-
nite element methods for nonlinear elliptic problems. Hou et al. [37] investigated a
two grid discretization scheme for semilinear parabolic integro-differential equations
by expanded mixed finite element methods. Zhou et al. [38, 39] proposed two-grid
algorithms for solving Cahn-Hilliard equation and Maxwell eigenvalue problem. Xu
and Zhou [40, 41] extended two-grid method to other problems. Especially, two-grid
method was used for solving the Schrödinger equations [42–48]. Jin et al. [42] firstly
proposed a two-grid finite element method for solving coupled partial differential equa-
tions, e.g., the Schrödinger-type equation. With this method, the solution of the cou-
pled equations on a fine grid is reduced to the solution of coupled equations on a much
coarser grid together with the solution of two Poisson equations on the same fine grid.
Chien et al. [43] studied efficient two-grid discretization schemes with two-loop contin-
uation algorithms for computing wave functions of two-coupled nonlinear Schrödinger
equations defined on the unit square and the unit disk. Jin et al. [48] constructed
semi-discrete two-grid finite element schemes which were proved to be convergent
with an optimal convergence order, and constructed full-discrete two-grid finite ele-
ment schemes with applying the Crank-Nicolson scheme for the time discretization
which were verified only by a numerical example.


