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Abstract: By using the hypergeometric function defined by the Dziok-Srivastava op-

erator, a new subclass of meromorphic function is introdued. We obtain Fekete-Szegö

inequalities for the meromorphic function f(z) for which α−
1 + α

{
1 +

z[lImf(z)]′′

[lImf(z)]′

}
z[lImf(z)]′

lImf(z)

≺ φ(z)
(
α ∈ C−

{1

2
, 1

})
.
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1 Introduction and Definition

Let Σ denote the class of meromorphic functions of the form:

f(z) =
1

z
+

+∞∑
n=0

anz
n, (1.1)

which are analytic in the open unit disk

U∗ = {z : z ∈ C, 0 < |z| < 1} = U − {0}.

A function f ∈ Σ is meromorphic starlike of order β, denoted by S∗(β), if Re

{
zf ′(z)

f(z)

}
< −β
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(0 ≤ β < 1, z ∈ U∗). A function f ∈ Σ is meromorphic convex of order β, denoted by

C∗(β), if Re

{
1 +

zf ′′(z)

f ′(z)

}
< −β (0 ≤ β < 1, z ∈ U∗).

Let φ be an analytic function with positive real part in the open unit disk U , φ(0) = 1,

φ′(0) > 0 and φ(U) be symmetric with respect to the real axis. The Taylor’s series expansion

of such function is of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · (1.2)

Aouf[1] introduced and studied the class F∗
α(φ), which consists of functions f(z) ∈ Σ for

− zf ′(z) + αz2f ′′(z)

(1− α)f(z) + αzf ′(z)
≺ φ(z), α ∈ C− (0, 1].

For the functions

f(z) =
1

z
+

+∞∑
n=0

anz
n, g(z) =

1

z
+

+∞∑
n=0

bnz
n,

let (f ∗ g)(z) be the Hadamard product or convolution of f(z) and g(z) defined by

(f ∗ g)(z) = 1

z
+

+∞∑
n=0

anbnz
n. (1.3)

The generalized hypergeometric function lFm for a1, · · · , al, d1, · · · , dm such that

dj ̸= 0,−1, · · · for j = 1, 2, · · · ,m, and z ∈ C is defined in [2] as follows:

lFm(a1, · · · , al; d1, · · · , dm; z) =
+∞∑
n=0

(a1)n · · · (al)nzn

(d1)n · · · (dm)nn!
(1.4)

with l ≤ m+1, l,m ∈ N, where the Pochhammer symbol (ν)n (or the shifted factorial since

(1)n = n!) is given in terms of the gamma function as

(ν)n =
Γ (ν + n)

Γ (ν)
=

{
1, n = 0, ν ∈ C− {0});
ν(ν + 1) · · · (ν + n− 1), n ∈ N+, ν ∈ C).

For the positive real values a1, · · · , al, d1, · · · , dm such that dj ̸= 0,−1, · · · for j =

1, 2, · · · ,m, by using the Gaussian hypergeometric function given by (1.4), we thus obtain

lImf(z) = z−1(lFm(a1, · · · , al; d1, · · · , dm; z)) ∗ f(z) = 1

z
+

+∞∑
n=0

ϕnanz
n, (1.5)

where

ϕn =

l∏
i=1

(ai)n+1

m∏
i=1

(di)n+1(n+ 1)!
(1.6)

(see [3]–[5], and also the more recent works [6]–[8] dealing extensively with Dziok-Srivastava

operator).

We note that:

(i) The differential operator 2I1(a, b; c; z) = (Ia,bc f)(z) (a, b ∈ C, c ∈ Z+) was studied

by Hohlov[9];

(ii) The differential operator 2I1(n + 1, 1; 1; z) = Dnf(z) (n ∈ N+) was studied by

Ruscheweyh[10];


