ON THE EXISTENCE OF SOLUTION OF A NONLINEAR TWO－POINT BOUNDARY VALUE PROBLEM ARISING FROM A LIQUID METAL FLOW＊

Cheng Xiaoliang（程晓良）Ying Weiting（应玮婷）

Abstract

In this paper，we discuss the existence of solution of a nonlinear two－point boundary value problem with a positive parameter Q arising in the study of surface－ tension－induced flows of a liquid metal or semiconductor．By applying the Schauder＇s fixed－point theorem，we prove that the problem admits a solution for $0 \leq Q \leq 14.306$ ． It improves the result of $0 \leq Q<1$ in［2］and $0 \leq Q \leq 13.213$ in［3］． Key words nonlinear two－point boundary value problem，Schauder fixed－point theo－ rem，upper－lower estimate solution method．

AMS（2000）subject classifications 34B

1 Introduction

In this paper，we discuss the following nonautonomous two－point boundary value problem

$$
\left\{\begin{array}{l}
{\left[x\left(\frac{f^{\prime}}{x}\right)^{\prime}\right]^{\prime}+Q\left[f\left(\frac{f^{\prime}}{x}\right)^{\prime}-x\left(\frac{f^{\prime}}{x}\right)^{2}\right]=\beta x, \quad 0<x<1,} \tag{1.1}\\
f(0)=f(1)=\left.\left(\frac{f^{\prime}}{x}\right)^{\prime}\right|_{x=0}=\left.\left(\frac{f^{\prime}}{x}\right)^{\prime}\right|_{x=1}-1=0,
\end{array}\right.
$$

where ${ }^{\prime}=d / d x$ ．This problem arises from problems of surface－tension－induced flows of a liquid metal or semiconductor in a cylindrical floating zone of length $2 L$ and radius R ．The parameter $Q=2 L^{3} R^{-3}(R e)$ with the Reynolds number Re，and β is a constant to be determine．

Following $[2,3]$ ，we obtain the following problem by differentiating（1．1）with respect to x ，

$$
\left\{\begin{array}{l}
{\left[\left(\frac{f^{\prime}}{x}\right)^{\prime}\right]^{\prime \prime}+\left[\frac{1+Q f}{x}\right]\left(\frac{f^{\prime}}{x}\right)^{\prime \prime}-\left[\frac{1+Q(x f)^{\prime}}{x^{2}}\right]\left(\frac{f^{\prime}}{x}\right)^{\prime}=0, \quad 0<x<1,} \tag{1.2}\\
f(0)=f(1)=\left.\left(\frac{f^{\prime}}{x}\right)^{\prime}\right|_{x=0}=\left.\left(\frac{f^{\prime}}{x}\right)^{\prime}\right|_{x=1}-1=0 .
\end{array}\right.
$$

[^0]It is equivalent to the system

$$
\left\{\begin{array}{l}
\left(\frac{f^{\prime}}{x}\right)^{\prime}=g, \quad 0<x<1 \tag{1.3}\\
f(0)=f(1)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
g^{\prime \prime}+\left[\frac{1+Q f}{x}\right] g^{\prime}-\left[\frac{1+Q(x f)^{\prime}}{x^{2}}\right] g=0, \quad 0<x<1 \tag{1.4}\\
g(0)=g(1)-1=0 .
\end{array}\right.
$$

Numerical solutions of (1.1) have been reported in [1] for $0 \leq Q \leq 32.7$ and $Q \geq 1749$. In [2], they have proved the existence of solutions theoretically for $0 \leq Q<1$ and the authors in [3] improved to $0 \leq Q \leq 13.213$. They used the upper-lower estimate solution method and Schauder fixed-point theorem on $f(x)$. In this paper, we will apply the Schauder fixed-point theorem on function $g(x)$ and obtain a slight better result for the existence of solutions. We prove that for $0 \leq Q \leq 14.306$, there exists at least one solution to equation (1.1).

2 The Existence of Solution

Denote the set

$$
\begin{equation*}
D=\left\{g \mid g \in C^{2}(0,1), x^{3} \leq g(x) \leq x^{\frac{21}{50}}, 0 \leq x \leq 1\right\} \tag{2.1}
\end{equation*}
$$

We first will prove the following result.
Theorem 2.1 For $0 \leq Q \leq 14.306$ and any $g \in D$, there exists a unique solution $g^{*} \in D$ satisfies the following equations

$$
\left\{\begin{array}{l}
\left(\frac{f^{\prime}}{x}\right)^{\prime}=g, \quad 0<x<1 \tag{2.2}\\
f(0)=f(1)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
g^{* \prime \prime}+\left[\frac{1+Q f}{*^{x}}\right] g^{* \prime}-\left[\frac{1+Q(x f)^{\prime}}{x^{2}}\right] g^{*}=0, \quad 0<x<1 \tag{2.3}\\
g^{*}(0)=g^{*}(1)-1=0 .
\end{array}\right.
$$

Proof It is easy to see from (2.2) that

$$
\begin{gather*}
f(x)=\frac{1}{2}\left(x^{2}-1\right) \int_{0}^{x} t^{2} g(t) \mathrm{d} t-\frac{1}{2} x^{2} \int_{x}^{1}\left(1-t^{2}\right) g(t) \mathrm{d} t . \tag{2.4}\\
f^{\prime}(x)=x \int_{0}^{x} t^{2} g(t) \mathrm{d} t-x \int_{x}^{1}\left(1-t^{2}\right) g(t) \mathrm{d} t \tag{2.5}
\end{gather*}
$$

By (2.4)-(2.5), we get the equation

$$
\begin{equation*}
(x f)^{\prime}=f(x)+x f^{\prime}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \int_{0}^{x} t^{2} g(t) \mathrm{d} t-\frac{3}{2} x^{2} \int_{x}^{1}\left(1-t^{2}\right) g(t) \mathrm{d} t \tag{2.6}
\end{equation*}
$$

Notice $g \in D$ in (2.6), then $(x f)^{\prime} \geq s(x)$ with

$$
s(x)= \begin{cases}\frac{1}{2}\left(3 x^{2}-1\right) \int_{0}^{x} t^{2} t^{3} \mathrm{~d} t-\frac{3}{2} x^{2} \int_{x}^{1}\left(1-t^{2}\right) t^{\frac{21}{50}} \mathrm{~d} t, & \frac{\sqrt{3}}{3} \leq x \leq 1 \tag{2.7}\\ \frac{1}{2}\left(3 x^{2}-1\right) \int_{0}^{x} t^{2} t^{\frac{21}{50}} \mathrm{~d} t-\frac{3}{2} x^{2} \int_{x}^{1}\left(1-t^{2}\right) t^{\frac{21}{50}} \mathrm{~d} t, & 0 \leq x \leq \frac{\sqrt{3}}{3}\end{cases}
$$

[^0]: ＊The work was supported by National Natural Science Foundation（Grant No．10471129）of China． Received：Sep．5， 2003.

