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ON THE EXISTENCE OF SOLUTION

OF A NONLINEAR TWO-POINT BOUNDARY VALUE

PROBLEM ARISING FROM A LIQUID METAL FLOW∗
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Abstract In this paper, we discuss the existence of solution of a nonlinear two-point
boundary value problem with a positive parameter Q arising in the study of surface-
tension-induced flows of a liquid metal or semiconductor. By applying the Schauder’s
fixed-point theorem, we prove that the problem admits a solution for 0 ≤ Q ≤ 14.306.
It improves the result of 0 ≤ Q < 1 in [2] and 0 ≤ Q ≤ 13.213 in [3].
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1 Introduction

In this paper, we discuss the following nonautonomous two-point boundary value problem
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(1.1)

where ′ = d/dx. This problem arises from problems of surface-tension-induced flows of a liquid
metal or semiconductor in a cylindrical floating zone of length 2L and radius R. The parameter
Q = 2L3R−3(Re) with the Reynolds number Re, and β is a constant to be determine.

Following [2,3], we obtain the following problem by differentiating (1.1) with respect to x,
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(1.2)
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It is equivalent to the system { (f ′

x

)′ = g, 0 < x < 1,

f(0) = f(1) = 0
(1.3)

and {
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]
g = 0, 0 < x < 1,

g(0) = g(1)− 1 = 0.
(1.4)

Numerical solutions of (1.1) have been reported in [1] for 0 ≤ Q ≤ 32.7 and Q ≥ 1749. In
[2], they have proved the existence of solutions theoretically for 0 ≤ Q < 1 and the authors in [3]
improved to 0 ≤ Q ≤ 13.213. They used the upper-lower estimate solution method and Schauder
fixed-point theorem on f(x). In this paper, we will apply the Schauder fixed-point theorem on
function g(x) and obtain a slight better result for the existence of solutions. We prove that for
0 ≤ Q ≤ 14.306, there exists at least one solution to equation (1.1).

2 The Existence of Solution

Denote the set

D = {g| g ∈ C2(0, 1), x3 ≤ g(x) ≤ x
21
50 , 0 ≤ x ≤ 1 }. (2.1)

We first will prove the following result.

Theorem 2.1 For 0 ≤ Q ≤ 14.306 and any g ∈ D, there exists a unique solution g∗ ∈ D

satisfies the following equations { (f ′

x

)′ = g, 0 < x < 1,

f(0) = f(1) = 0,
(2.2)
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g∗ = 0, 0 < x < 1,

g∗(0) = g∗(1)− 1 = 0.
(2.3)

Proof It is easy to see from (2.2) that
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By (2.4)-(2.5), we get the equation
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Notice g ∈ D in (2.6), then (xf)′ ≥ s(x) with

s(x) =
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