On The Maximal-Like Solution of Matrix Equation $\boldsymbol{X}+\boldsymbol{A}^{*} \boldsymbol{X}^{-2} \boldsymbol{A}=\boldsymbol{I}^{*} \dagger$

Minghui Wang*and Musheng Wei
Department of Mathematics, East China Normal University, Shanghai 200062, China.
Received October 17, 2003; Accepted (in revised version) September 5, 2004

Abstract

In this paper, we study several iterative methods for finding the maximal-like solution of the matrix equation $X+A^{*} X^{-2} A=I$, and deduce some properties of the maximal-like solution with these methods.

Key words: Matrix equation; maximal-like solution.
AMS subject classifications: 65F10, 65F30

1 Introduction

In this paper we consider the matrix equation

$$
\begin{equation*}
X+A^{*} X^{-2} A=I \tag{1}
\end{equation*}
$$

where I is the $n \times n$ identity matrix and A is an $n \times n$ complex matrix.
Throughout this paper we denote $\|\cdot\|$ the Euclidean vector norm, or corresponding subordinate matrix norm (simply 2-norm). $\lambda(M), \rho(M)$ are respectively the spectrum and spectral radius of a square matrix M, A^{*} is conjugate transpose of a matrix A. For two positive definite (Hermitian) matrices P, Q of the same dimension, $P>Q(P \geq Q)$ means that $P-Q$ is positive definite (semi-definite). For any positive definite solution X of Eq. (1), we have $X_{S} \leq X \leq X_{L}$, where X_{L} and X_{S} are respectively the maximal solution and minimal solution, and X_{l} is the maximal-like solution whose inverse has the minimal 2-norm.

In the literature, matrix equations of type like Eq. (1) have been extensively studied. Articles [$3,4,11]$ discuss the matrix equation $X+A^{*} X^{-1} A=I$ and obtained some properties of the equation, including the existence of maximal and minimal solutions. [1, 2, 10] generalize the results, and $[7,8]$ directly discuss nonlinear matrix equation of type in Eq. (1). [7, 8] mainly study the following algorithms:

$$
\left\{\begin{array}{l}
X_{0}=\alpha I \tag{2}\\
X_{k}=I-A^{*} X_{k-1}^{-2} A
\end{array},\left\{\begin{array}{l}
X_{0}=\alpha I \\
X_{k+1}=\sqrt{A\left(I-X_{k}\right)^{-1} A^{*}}
\end{array}\right.\right.
$$

[^0]and provide some convergence properties under different conditions. However, they do not show the existence of the maximal and minimal solutions and the properties of solutions. [5] proves the existence of the minimal solutions. [9] studies more general matrix equations of the type $X^{s} \pm A^{T} X^{-t} A=I$.

In this paper, we discuss the maximal-like solution X_{l}, which is the maximal solution X_{L} when X_{L} exists. In Sections 2 and 3 we propose two algorithms for finding X_{l}, and study properties of these algorithms; in Section 4 we provide some numerical experiments.

2 An algorithm for computing X_{l}

In this section, we propose an iterative algorithm for computing X_{l}. We will prove that the algorithm is linearly convergent, and derive some properties of X_{l}. Unlike the commonly used algorithms given in Eq. (2) which involve computing the inverse, our algorithm only requires matrix multiplications.

We first give a necessary condition for existence of a solution of Eq. (1)
Theorem 2.1 ([5]). If Eq. (1) has a positive definite solution X, then

$$
\rho(A) \leq \frac{2 \sqrt{3}}{9}
$$

Corollary 2.1. Suppose that A is normal. If Eq. (1) has a positive definite solution, then

$$
\|A\| \leq \frac{2 \sqrt{3}}{9}
$$

Lemma 2.1. Define

$$
f(\eta)=\frac{\eta}{(1+\eta)^{3}}, \eta \geq 0
$$

Then f is increasing for $0 \leq \eta \leq \frac{1}{2}$, decreasing for $\frac{1}{2} \leq \eta \leq+\infty$, and

$$
f_{\max }=f\left(\frac{1}{2}\right)=\frac{4}{27}
$$

Proof: From

$$
f^{\prime}(\eta)=\frac{1}{(1+\eta)^{4}}(1-2 \eta)
$$

we know that $f(\eta)$ is increasing in $\left[0, \frac{1}{2}\right]$, and decreasing in $\left[\frac{1}{2},+\infty\right]$. When $\eta=\frac{1}{2}, f_{\max }=$ $f\left(\frac{1}{2}\right)=\frac{4}{27}$.

We now present the main result of this section.
Theorem 2.2. If $\|A\|<\frac{2 \sqrt{3}}{9}$, then there exists a unique solution X_{l} of Eq. (1) satisfying

$$
\left\|X_{l}^{-1}\right\|<\frac{3}{2}
$$

Moreover, for any other positive definite solution X we have

$$
\left\|X^{-1}\right\| \geq \frac{3}{2}
$$

[^0]: *Correspondence to: Minghui Wang, Department of Mathematics, East China Normal University, Shanghai 200062, China. Email: wangmh2000@eyou.com
 ${ }^{\dagger}$ This work was supported by the National Natural Science Foundation of China under grant 10371044, and the Science and Technology Commission of Shanghai Municipality under grant 04JC14031.

