J. Nonl. Mod. Anal., 3 (2021), pp. 447-463.
Published online: 2022-06
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we studied a delayed host-generalist parasitoid model with Holling II functional response and diffusion term. The Turing instability and local stability are studied. The existence of Hopf bifurcation is investigated, and some explicit formulas for determining the bifurcation direction and the stability of the bifurcating periodic solution are derived by the theory of center manifold and normal form method. Some numerical simulations are carried out.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2021.447}, url = {http://global-sci.org/intro/article_detail/jnma/20677.html} }In this paper, we studied a delayed host-generalist parasitoid model with Holling II functional response and diffusion term. The Turing instability and local stability are studied. The existence of Hopf bifurcation is investigated, and some explicit formulas for determining the bifurcation direction and the stability of the bifurcating periodic solution are derived by the theory of center manifold and normal form method. Some numerical simulations are carried out.