J. Nonl. Mod. Anal., 3 (2021), pp. 421-430.
Published online: 2022-06
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
The travelling wave solutions and conservation laws of the (2+1)-dimensional Broer-Kaup-Kupershmidt (BKK) equation are considered in this paper. Under the travelling wave frame, the BKK equation is transformed to a system of ordinary differential equations (ODEs) with two dependent variables. Therefore, it happens that one dependent variable $u$ can be decoupled into a second order ODE that corresponds to a Hamiltonian planar dynamical system involving three arbitrary constants. By using the bifurcation analysis, we obtain the bounded travelling wave solutions $u,$ which include the kink, anti-kink and periodic wave solutions. Finally, the conservation laws of the BBK equation are derived by employing the multiplier approach.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2021.421}, url = {http://global-sci.org/intro/article_detail/jnma/20671.html} }The travelling wave solutions and conservation laws of the (2+1)-dimensional Broer-Kaup-Kupershmidt (BKK) equation are considered in this paper. Under the travelling wave frame, the BKK equation is transformed to a system of ordinary differential equations (ODEs) with two dependent variables. Therefore, it happens that one dependent variable $u$ can be decoupled into a second order ODE that corresponds to a Hamiltonian planar dynamical system involving three arbitrary constants. By using the bifurcation analysis, we obtain the bounded travelling wave solutions $u,$ which include the kink, anti-kink and periodic wave solutions. Finally, the conservation laws of the BBK equation are derived by employing the multiplier approach.