Volume 3, Issue 1
Homoclinic Orbits of a Quadratic Isochronous System by the Perturbation-Incremental Method

Junhua Li, Hailing Wang, Zuxiong Li, Zhusong Chu & Chen Zhang

J. Nonl. Mod. Anal., 3 (2021), pp. 115-130.

Published online: 2021-04

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

In this paper, the perturbation-incremental method is presented for the analysis of a quadratic isochronous system. This method combines the remarkable characteristics of the perturbation method and the incremental method. The first step is the perturbation method. Assuming that the parameter $\lambda$ is small, i.e. $\lambda\approx0$, the initial expression of the homoclinic orbit is obtained. The second step is the parameter incremental method. By extending the solution corresponding to small parameters to large parameters, we can get the analytical-expressions of homoclinic orbits.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JNMA-3-115, author = {Li , JunhuaWang , HailingLi , ZuxiongChu , Zhusong and Zhang , Chen}, title = {Homoclinic Orbits of a Quadratic Isochronous System by the Perturbation-Incremental Method}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2021}, volume = {3}, number = {1}, pages = {115--130}, abstract = {

In this paper, the perturbation-incremental method is presented for the analysis of a quadratic isochronous system. This method combines the remarkable characteristics of the perturbation method and the incremental method. The first step is the perturbation method. Assuming that the parameter $\lambda$ is small, i.e. $\lambda\approx0$, the initial expression of the homoclinic orbit is obtained. The second step is the parameter incremental method. By extending the solution corresponding to small parameters to large parameters, we can get the analytical-expressions of homoclinic orbits.

}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2021.115}, url = {http://global-sci.org/intro/article_detail/jnma/18781.html} }
TY - JOUR T1 - Homoclinic Orbits of a Quadratic Isochronous System by the Perturbation-Incremental Method AU - Li , Junhua AU - Wang , Hailing AU - Li , Zuxiong AU - Chu , Zhusong AU - Zhang , Chen JO - Journal of Nonlinear Modeling and Analysis VL - 1 SP - 115 EP - 130 PY - 2021 DA - 2021/04 SN - 3 DO - http://doi.org/10.12150/jnma.2021.115 UR - https://global-sci.org/intro/article_detail/jnma/18781.html KW - Perturbation-incremental method, Homoclinic orbits, Quadratic isochronous system. AB -

In this paper, the perturbation-incremental method is presented for the analysis of a quadratic isochronous system. This method combines the remarkable characteristics of the perturbation method and the incremental method. The first step is the perturbation method. Assuming that the parameter $\lambda$ is small, i.e. $\lambda\approx0$, the initial expression of the homoclinic orbit is obtained. The second step is the parameter incremental method. By extending the solution corresponding to small parameters to large parameters, we can get the analytical-expressions of homoclinic orbits.

Li , JunhuaWang , HailingLi , ZuxiongChu , Zhusong and Zhang , Chen. (2021). Homoclinic Orbits of a Quadratic Isochronous System by the Perturbation-Incremental Method. Journal of Nonlinear Modeling and Analysis. 3 (1). 115-130. doi:10.12150/jnma.2021.115
Copy to clipboard
The citation has been copied to your clipboard